Normalized defining polynomial
\( x^{24} - x^{23} + 5 x^{22} - 14 x^{21} + 14 x^{20} - 70 x^{19} + 71 x^{18} - 630 x^{17} + 914 x^{16} - 2039 x^{15} + 7070 x^{14} - 4046 x^{13} + 19671 x^{12} - 20230 x^{11} + 176750 x^{10} - 254875 x^{9} + 571250 x^{8} - 1968750 x^{7} + 1109375 x^{6} - 5468750 x^{5} + 5468750 x^{4} - 27343750 x^{3} + 48828125 x^{2} - 48828125 x + 244140625 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93855357514722449501524260642553280001=3^{12}\cdot 7^{20}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(399=3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{399}(1,·)$, $\chi_{399}(134,·)$, $\chi_{399}(265,·)$, $\chi_{399}(398,·)$, $\chi_{399}(208,·)$, $\chi_{399}(20,·)$, $\chi_{399}(341,·)$, $\chi_{399}(151,·)$, $\chi_{399}(284,·)$, $\chi_{399}(286,·)$, $\chi_{399}(229,·)$, $\chi_{399}(227,·)$, $\chi_{399}(37,·)$, $\chi_{399}(113,·)$, $\chi_{399}(170,·)$, $\chi_{399}(172,·)$, $\chi_{399}(305,·)$, $\chi_{399}(115,·)$, $\chi_{399}(94,·)$, $\chi_{399}(248,·)$, $\chi_{399}(58,·)$, $\chi_{399}(379,·)$, $\chi_{399}(362,·)$, $\chi_{399}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{13} + \frac{1}{5} a^{12} + \frac{11}{25} a^{11} - \frac{11}{25} a^{10} + \frac{1}{5} a^{9} - \frac{4}{25} a^{8} - \frac{1}{5} a^{7} - \frac{11}{25} a^{6} + \frac{11}{25} a^{5} - \frac{1}{5} a^{4} + \frac{4}{25} a^{3} - \frac{4}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{125} a^{15} - \frac{1}{125} a^{14} + \frac{1}{25} a^{13} - \frac{14}{125} a^{12} + \frac{14}{125} a^{11} + \frac{11}{25} a^{10} - \frac{54}{125} a^{9} - \frac{1}{25} a^{8} + \frac{39}{125} a^{7} - \frac{39}{125} a^{6} - \frac{11}{25} a^{5} - \frac{46}{125} a^{4} + \frac{46}{125} a^{3} + \frac{4}{25} a^{2}$, $\frac{1}{625} a^{16} - \frac{1}{625} a^{15} + \frac{1}{125} a^{14} - \frac{14}{625} a^{13} + \frac{14}{625} a^{12} - \frac{14}{125} a^{11} + \frac{71}{625} a^{10} - \frac{1}{125} a^{9} + \frac{289}{625} a^{8} - \frac{164}{625} a^{7} + \frac{39}{125} a^{6} - \frac{296}{625} a^{5} + \frac{296}{625} a^{4} - \frac{46}{125} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{3125} a^{17} - \frac{1}{3125} a^{16} + \frac{1}{625} a^{15} - \frac{14}{3125} a^{14} + \frac{14}{3125} a^{13} - \frac{14}{625} a^{12} + \frac{71}{3125} a^{11} - \frac{126}{625} a^{10} + \frac{914}{3125} a^{9} + \frac{1086}{3125} a^{8} + \frac{164}{625} a^{7} - \frac{921}{3125} a^{6} + \frac{921}{3125} a^{5} - \frac{296}{625} a^{4} - \frac{11}{25} a^{3} + \frac{11}{25} a^{2} - \frac{1}{5} a$, $\frac{1}{62500} a^{18} + \frac{1}{15625} a^{17} + \frac{11}{62500} a^{15} - \frac{14}{15625} a^{14} - \frac{279}{62500} a^{12} - \frac{159}{625} a^{11} - \frac{559}{15625} a^{10} + \frac{2531}{62500} a^{9} + \frac{1}{5} a^{8} - \frac{7799}{15625} a^{7} - \frac{559}{62500} a^{6} + \frac{131}{625} a^{4} + \frac{31}{500} a^{3} + \frac{1}{5} a + \frac{1}{4}$, $\frac{1}{18309062500} a^{19} + \frac{116339}{18309062500} a^{18} + \frac{82067}{915453125} a^{17} - \frac{1175989}{18309062500} a^{16} + \frac{7159629}{18309062500} a^{15} - \frac{1148938}{915453125} a^{14} + \frac{16463721}{18309062500} a^{13} + \frac{1712966327}{3661812500} a^{12} - \frac{1072105059}{4577265625} a^{11} - \frac{935377529}{18309062500} a^{10} - \frac{905373423}{3661812500} a^{9} - \frac{2200676924}{4577265625} a^{8} - \frac{7271742219}{18309062500} a^{7} - \frac{45875453}{3661812500} a^{6} + \frac{1644216}{183090625} a^{5} + \frac{63788099}{146472500} a^{4} + \frac{2650077}{29294500} a^{3} - \frac{117444}{1464725} a^{2} + \frac{46929}{1171780} a + \frac{70195}{234356}$, $\frac{1}{91545312500} a^{20} - \frac{1}{91545312500} a^{19} - \frac{128729}{18309062500} a^{18} + \frac{10315011}{91545312500} a^{17} - \frac{12889611}{91545312500} a^{16} + \frac{11473581}{18309062500} a^{15} - \frac{144410279}{91545312500} a^{14} + \frac{1772012699}{18309062500} a^{13} - \frac{9402303861}{91545312500} a^{12} - \frac{33388694289}{91545312500} a^{11} + \frac{8483264569}{18309062500} a^{10} + \frac{15720081929}{91545312500} a^{9} + \frac{6674402421}{91545312500} a^{8} + \frac{7604896159}{18309062500} a^{7} + \frac{857795299}{3661812500} a^{6} - \frac{168680657}{732362500} a^{5} - \frac{55647747}{146472500} a^{4} - \frac{9901191}{29294500} a^{3} + \frac{665413}{5858900} a^{2} + \frac{225183}{1171780} a + \frac{105471}{234356}$, $\frac{1}{457726562500} a^{21} - \frac{1}{457726562500} a^{20} + \frac{1}{91545312500} a^{19} + \frac{523111}{457726562500} a^{18} + \frac{46636889}{457726562500} a^{17} - \frac{8908889}{91545312500} a^{16} + \frac{228476321}{457726562500} a^{15} + \frac{1605338499}{91545312500} a^{14} - \frac{8055987211}{457726562500} a^{13} + \frac{40133986711}{457726562500} a^{12} + \frac{42477025289}{91545312500} a^{11} - \frac{78067745921}{457726562500} a^{10} + \frac{12884873421}{457726562500} a^{9} - \frac{20359668921}{91545312500} a^{8} + \frac{541129129}{3661812500} a^{7} + \frac{314040591}{3661812500} a^{6} - \frac{12655099}{146472500} a^{5} - \frac{70541281}{146472500} a^{4} + \frac{4649381}{29294500} a^{3} + \frac{237703}{1171780} a^{2} - \frac{31}{1171780} a + \frac{1044}{58589}$, $\frac{1}{2288632812500} a^{22} - \frac{1}{2288632812500} a^{21} + \frac{1}{457726562500} a^{20} - \frac{7}{1144316406250} a^{19} + \frac{9503139}{2288632812500} a^{18} - \frac{39041889}{457726562500} a^{17} + \frac{116610973}{1144316406250} a^{16} + \frac{1523606749}{457726562500} a^{15} - \frac{5946677211}{2288632812500} a^{14} + \frac{20066469293}{1144316406250} a^{13} - \frac{21568072961}{457726562500} a^{12} - \frac{1100011100921}{2288632812500} a^{11} - \frac{180892210477}{1144316406250} a^{10} + \frac{14976800329}{457726562500} a^{9} + \frac{7839397889}{18309062500} a^{8} - \frac{4493662657}{9154531250} a^{7} - \frac{29586801}{3661812500} a^{6} + \frac{1531859}{17862500} a^{5} - \frac{28919439}{73236250} a^{4} + \frac{986669}{29294500} a^{3} + \frac{937469}{5858900} a^{2} - \frac{472073}{1171780} a - \frac{29709}{117178}$, $\frac{1}{11443164062500} a^{23} - \frac{1}{11443164062500} a^{22} + \frac{1}{2288632812500} a^{21} - \frac{7}{5721582031250} a^{20} + \frac{7}{5721582031250} a^{19} + \frac{4405309}{572158203125} a^{18} + \frac{847642223}{5721582031250} a^{17} + \frac{733674937}{1144316406250} a^{16} - \frac{249035709}{2860791015625} a^{15} + \frac{9832031793}{5721582031250} a^{14} - \frac{10271449293}{1144316406250} a^{13} + \frac{733181801}{2860791015625} a^{12} + \frac{1764534252023}{5721582031250} a^{11} - \frac{420209653273}{1144316406250} a^{10} - \frac{1685957309}{22886328125} a^{9} + \frac{2581696043}{45772656250} a^{8} - \frac{2059667353}{9154531250} a^{7} - \frac{644304}{915453125} a^{6} - \frac{124355223}{366181250} a^{5} - \frac{10540119}{73236250} a^{4} - \frac{457004}{7323625} a^{3} - \frac{230161}{5858900} a^{2} - \frac{843}{1171780} a - \frac{57751}{234356}$
Class group and class number
$C_{84}$, which has order $84$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{155961}{91545312500} a^{22} + \frac{279}{390625} a^{15} - \frac{77836}{390625} a^{8} + \frac{4359375}{234356} a \) (order $42$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 445267011.8484134 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.12.6.1 | $x^{12} + 41154 x^{6} - 2476099 x^{2} + 423412929$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 19.12.6.1 | $x^{12} + 41154 x^{6} - 2476099 x^{2} + 423412929$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |