Normalized defining polynomial
\( x^{24} - x^{23} - x^{22} + 7 x^{21} - 12 x^{20} - 3 x^{19} + 58 x^{18} + 153 x^{17} - 245 x^{16} + 180 x^{15} + 748 x^{14} - 2547 x^{13} + 2506 x^{12} + 5040 x^{11} + 4818 x^{10} + 2767 x^{9} + 239 x^{8} - 1621 x^{7} - 2243 x^{6} - 1860 x^{5} - 855 x^{4} + 189 x^{3} + 810 x^{2} + 972 x + 729 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8973071778116912219457090949865341129=7^{20}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(91=7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{91}(64,·)$, $\chi_{91}(1,·)$, $\chi_{91}(66,·)$, $\chi_{91}(5,·)$, $\chi_{91}(8,·)$, $\chi_{91}(73,·)$, $\chi_{91}(12,·)$, $\chi_{91}(79,·)$, $\chi_{91}(18,·)$, $\chi_{91}(83,·)$, $\chi_{91}(86,·)$, $\chi_{91}(25,·)$, $\chi_{91}(90,·)$, $\chi_{91}(27,·)$, $\chi_{91}(31,·)$, $\chi_{91}(34,·)$, $\chi_{91}(38,·)$, $\chi_{91}(40,·)$, $\chi_{91}(44,·)$, $\chi_{91}(47,·)$, $\chi_{91}(51,·)$, $\chi_{91}(53,·)$, $\chi_{91}(57,·)$, $\chi_{91}(60,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{4}$, $\frac{1}{1663355697} a^{19} - \frac{224718197}{1663355697} a^{18} - \frac{242292505}{1663355697} a^{17} + \frac{137277004}{1663355697} a^{16} + \frac{2887114}{1663355697} a^{15} - \frac{18004652}{1663355697} a^{14} + \frac{59770719}{554451899} a^{13} + \frac{44828101}{1663355697} a^{12} - \frac{155295897}{554451899} a^{11} - \frac{346642136}{1663355697} a^{10} - \frac{247854082}{554451899} a^{9} - \frac{561188549}{1663355697} a^{8} + \frac{132017291}{554451899} a^{7} + \frac{455358346}{1663355697} a^{6} - \frac{365702323}{1663355697} a^{5} + \frac{159072493}{554451899} a^{4} - \frac{305139659}{1663355697} a^{3} + \frac{134327888}{554451899} a^{2} - \frac{667890754}{1663355697} a - \frac{6009384}{554451899}$, $\frac{1}{4990067091} a^{20} - \frac{1}{4990067091} a^{19} + \frac{511919366}{4990067091} a^{18} + \frac{167082778}{4990067091} a^{17} + \frac{157478060}{1663355697} a^{16} - \frac{46919774}{554451899} a^{15} + \frac{273338317}{4990067091} a^{14} - \frac{74713328}{1663355697} a^{13} + \frac{1561116037}{4990067091} a^{12} - \frac{221719193}{1663355697} a^{11} - \frac{924379535}{4990067091} a^{10} - \frac{269518463}{1663355697} a^{9} + \frac{303403123}{4990067091} a^{8} - \frac{129445916}{1663355697} a^{7} + \frac{24030642}{554451899} a^{6} - \frac{790388714}{4990067091} a^{5} + \frac{2452963667}{4990067091} a^{4} - \frac{776742364}{4990067091} a^{3} + \frac{377211325}{4990067091} a^{2} + \frac{17482879}{1663355697} a + \frac{226012648}{554451899}$, $\frac{1}{14970201273} a^{21} - \frac{1}{14970201273} a^{20} - \frac{1}{14970201273} a^{19} + \frac{2155324624}{14970201273} a^{18} - \frac{263800522}{4990067091} a^{17} + \frac{490273136}{4990067091} a^{16} - \frac{1246851959}{14970201273} a^{15} - \frac{7532126}{554451899} a^{14} + \frac{974419468}{14970201273} a^{13} + \frac{466054}{554451899} a^{12} + \frac{1042481062}{14970201273} a^{11} + \frac{244730774}{554451899} a^{10} + \frac{3404583679}{14970201273} a^{9} + \frac{91938136}{554451899} a^{8} - \frac{20796890}{4990067091} a^{7} + \frac{3863074621}{14970201273} a^{6} - \frac{4022725630}{14970201273} a^{5} + \frac{2691572264}{14970201273} a^{4} + \frac{6931540672}{14970201273} a^{3} - \frac{24758285}{4990067091} a^{2} + \frac{450621374}{1663355697} a - \frac{157502619}{554451899}$, $\frac{1}{44910603819} a^{22} - \frac{1}{44910603819} a^{21} - \frac{1}{44910603819} a^{20} + \frac{7}{44910603819} a^{19} + \frac{42348166}{516213837} a^{18} - \frac{2388452266}{14970201273} a^{17} - \frac{203224055}{44910603819} a^{16} + \frac{607069928}{4990067091} a^{15} + \frac{139124059}{44910603819} a^{14} - \frac{594823318}{4990067091} a^{13} - \frac{2401051229}{44910603819} a^{12} - \frac{975954595}{4990067091} a^{11} - \frac{601021382}{44910603819} a^{10} - \frac{2254041673}{4990067091} a^{9} + \frac{3141078196}{14970201273} a^{8} + \frac{10185600244}{44910603819} a^{7} - \frac{18553297864}{44910603819} a^{6} + \frac{6912953261}{44910603819} a^{5} + \frac{13717186783}{44910603819} a^{4} + \frac{4823519194}{14970201273} a^{3} - \frac{389314259}{4990067091} a^{2} - \frac{262771699}{554451899} a + \frac{1385561}{554451899}$, $\frac{1}{134731811457} a^{23} - \frac{1}{134731811457} a^{22} - \frac{1}{134731811457} a^{21} + \frac{7}{134731811457} a^{20} - \frac{4}{44910603819} a^{19} + \frac{4895720243}{44910603819} a^{18} + \frac{1826590072}{134731811457} a^{17} + \frac{541380383}{14970201273} a^{16} + \frac{5312435542}{134731811457} a^{15} - \frac{766866724}{14970201273} a^{14} + \frac{10286853004}{134731811457} a^{13} + \frac{6117758186}{14970201273} a^{12} - \frac{11197894982}{134731811457} a^{11} - \frac{2066527060}{14970201273} a^{10} - \frac{7741441742}{44910603819} a^{9} - \frac{14817427187}{134731811457} a^{8} + \frac{20464788425}{134731811457} a^{7} - \frac{27931004335}{134731811457} a^{6} - \frac{2595305585}{134731811457} a^{5} + \frac{307786933}{44910603819} a^{4} + \frac{2892100477}{14970201273} a^{3} + \frac{21809458}{4990067091} a^{2} + \frac{15404526}{554451899} a + \frac{211991442}{554451899}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{40072496}{134731811457} a^{23} + \frac{70126868}{134731811457} a^{22} + \frac{10018124}{134731811457} a^{21} - \frac{310561844}{134731811457} a^{20} + \frac{234429025}{44910603819} a^{19} - \frac{80144992}{44910603819} a^{18} - \frac{2414367884}{134731811457} a^{17} - \frac{1462646104}{44910603819} a^{16} + \frac{14416080436}{134731811457} a^{15} - \frac{4858790140}{44910603819} a^{14} - \frac{24564440048}{134731811457} a^{13} + \frac{42601809713}{44910603819} a^{12} - \frac{176970160460}{134731811457} a^{11} - \frac{42216374536}{44910603819} a^{10} - \frac{13865083616}{44910603819} a^{9} + \frac{33921367864}{134731811457} a^{8} + \frac{73583120780}{134731811457} a^{7} + \frac{72140510924}{134731811457} a^{6} + \frac{365195693533}{134731811457} a^{5} + \frac{791431796}{14970201273} a^{4} - \frac{801449920}{4990067091} a^{3} - \frac{410743084}{1663355697} a^{2} - \frac{110199364}{554451899} a - \frac{60108744}{554451899} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 209675214.65936095 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |