Properties

Label 24.0.87506404319...4336.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{72}\cdot 3^{32}$
Root discriminant $34.61$
Ramified primes $2, 3$
Class number $39$ (GRH)
Class group $[39]$ (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, 0, 0, 0, 0, 4725, 0, 0, 0, 0, 0, 0, 0, 186, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 186*x^16 + 4725*x^8 + 1)
 
gp: K = bnfinit(x^24 + 186*x^16 + 4725*x^8 + 1, 1)
 

Normalized defining polynomial

\( x^{24} + 186 x^{16} + 4725 x^{8} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8750640431914714140510423543328014336=2^{72}\cdot 3^{32}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(144=2^{4}\cdot 3^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{144}(1,·)$, $\chi_{144}(67,·)$, $\chi_{144}(133,·)$, $\chi_{144}(7,·)$, $\chi_{144}(73,·)$, $\chi_{144}(139,·)$, $\chi_{144}(13,·)$, $\chi_{144}(79,·)$, $\chi_{144}(19,·)$, $\chi_{144}(85,·)$, $\chi_{144}(25,·)$, $\chi_{144}(91,·)$, $\chi_{144}(31,·)$, $\chi_{144}(97,·)$, $\chi_{144}(37,·)$, $\chi_{144}(103,·)$, $\chi_{144}(43,·)$, $\chi_{144}(109,·)$, $\chi_{144}(49,·)$, $\chi_{144}(115,·)$, $\chi_{144}(55,·)$, $\chi_{144}(121,·)$, $\chi_{144}(61,·)$, $\chi_{144}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{65773} a^{16} - \frac{131}{3869} a^{8} - \frac{14910}{65773}$, $\frac{1}{65773} a^{17} - \frac{131}{3869} a^{9} - \frac{14910}{65773} a$, $\frac{1}{65773} a^{18} - \frac{131}{3869} a^{10} - \frac{14910}{65773} a^{2}$, $\frac{1}{65773} a^{19} - \frac{131}{3869} a^{11} - \frac{14910}{65773} a^{3}$, $\frac{1}{65773} a^{20} - \frac{131}{3869} a^{12} - \frac{14910}{65773} a^{4}$, $\frac{1}{65773} a^{21} - \frac{131}{3869} a^{13} - \frac{14910}{65773} a^{5}$, $\frac{1}{65773} a^{22} - \frac{131}{3869} a^{14} - \frac{14910}{65773} a^{6}$, $\frac{1}{65773} a^{23} - \frac{131}{3869} a^{15} - \frac{14910}{65773} a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{39}$, which has order $39$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{327}{65773} a^{19} - \frac{3591}{3869} a^{11} - \frac{1570184}{65773} a^{3} \) (order $16$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 165705493.8155171 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{12}$ (as 24T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})^+\), 4.0.2048.2, 6.0.419904.1, 6.6.3359232.1, 6.0.3359232.1, \(\Q(\zeta_{16})\), 12.0.722204136308736.1, 12.12.369768517790072832.1, 12.0.369768517790072832.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/13.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{24}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.12.16.14$x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$$3$$4$$16$$C_{12}$$[2]^{4}$
3.12.16.14$x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$$3$$4$$16$$C_{12}$$[2]^{4}$