Normalized defining polynomial
\( x^{24} - 10 x^{22} + 76 x^{20} - 528 x^{18} + 3536 x^{16} - 11456 x^{14} + 33920 x^{12} - 92544 x^{10} + 203008 x^{8} - 80384 x^{6} + 31744 x^{4} - 12288 x^{2} + 4096 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8711813351237484544000000000000000000=2^{36}\cdot 5^{18}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(67,·)$, $\chi_{280}(179,·)$, $\chi_{280}(193,·)$, $\chi_{280}(233,·)$, $\chi_{280}(9,·)$, $\chi_{280}(11,·)$, $\chi_{280}(81,·)$, $\chi_{280}(211,·)$, $\chi_{280}(121,·)$, $\chi_{280}(249,·)$, $\chi_{280}(267,·)$, $\chi_{280}(219,·)$, $\chi_{280}(107,·)$, $\chi_{280}(163,·)$, $\chi_{280}(113,·)$, $\chi_{280}(169,·)$, $\chi_{280}(43,·)$, $\chi_{280}(99,·)$, $\chi_{280}(177,·)$, $\chi_{280}(51,·)$, $\chi_{280}(137,·)$, $\chi_{280}(57,·)$, $\chi_{280}(123,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{84424192} a^{18} + \frac{2495}{42212096} a^{16} - \frac{40833}{21106048} a^{14} + \frac{24303}{10553024} a^{12} - \frac{43903}{5276512} a^{10} + \frac{28725}{1319128} a^{8} + \frac{47471}{1319128} a^{6} + \frac{48407}{659564} a^{4} + \frac{75253}{329782} a^{2} - \frac{54614}{164891}$, $\frac{1}{84424192} a^{19} + \frac{2495}{42212096} a^{17} - \frac{40833}{21106048} a^{15} + \frac{24303}{10553024} a^{13} - \frac{43903}{5276512} a^{11} + \frac{28725}{1319128} a^{9} + \frac{47471}{1319128} a^{7} + \frac{48407}{659564} a^{5} + \frac{75253}{329782} a^{3} - \frac{54614}{164891} a$, $\frac{1}{168848384} a^{20} - \frac{7135}{659564} a^{10} + \frac{61964}{164891}$, $\frac{1}{168848384} a^{21} - \frac{7135}{659564} a^{11} + \frac{61964}{164891} a$, $\frac{1}{337696768} a^{22} - \frac{7135}{1319128} a^{12} + \frac{30982}{164891} a^{2}$, $\frac{1}{337696768} a^{23} - \frac{7135}{1319128} a^{13} + \frac{30982}{164891} a^{3}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{19365}{168848384} a^{22} - \frac{187195}{168848384} a^{20} + \frac{703595}{84424192} a^{18} - \frac{1216713}{21106048} a^{16} + \frac{2033325}{5276512} a^{14} - \frac{12438785}{10553024} a^{12} + \frac{9108005}{2638256} a^{10} - \frac{1536290}{164891} a^{8} + \frac{26090063}{1319128} a^{6} - \frac{961795}{659564} a^{4} + \frac{187195}{329782} a^{2} - \frac{32275}{164891} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 198346402.31462404 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |