Normalized defining polynomial
\( x^{24} - 8 x^{23} + 132 x^{22} - 816 x^{21} + 7490 x^{20} - 37632 x^{19} + 244320 x^{18} - 1018488 x^{17} + 5077575 x^{16} - 17687984 x^{15} + 70097284 x^{14} - 203685496 x^{13} + 648555642 x^{12} - 1555088112 x^{11} + 3963223884 x^{10} - 7693059152 x^{9} + 15378660938 x^{8} - 23276555096 x^{7} + 35133764236 x^{6} - 39972851752 x^{5} + 66295185944 x^{4} - 78964916728 x^{3} + 208299167304 x^{2} - 158776304176 x + 138265878241 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80352295654101908234561020234985111552000000000000=2^{93}\cdot 5^{12}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1120=2^{5}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1120}(1,·)$, $\chi_{1120}(961,·)$, $\chi_{1120}(459,·)$, $\chi_{1120}(641,·)$, $\chi_{1120}(841,·)$, $\chi_{1120}(779,·)$, $\chi_{1120}(499,·)$, $\chi_{1120}(401,·)$, $\chi_{1120}(659,·)$, $\chi_{1120}(921,·)$, $\chi_{1120}(281,·)$, $\chi_{1120}(219,·)$, $\chi_{1120}(361,·)$, $\chi_{1120}(1059,·)$, $\chi_{1120}(81,·)$, $\chi_{1120}(379,·)$, $\chi_{1120}(681,·)$, $\chi_{1120}(939,·)$, $\chi_{1120}(99,·)$, $\chi_{1120}(561,·)$, $\chi_{1120}(179,·)$, $\chi_{1120}(739,·)$, $\chi_{1120}(121,·)$, $\chi_{1120}(1019,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{8} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{25} a^{12} + \frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} - \frac{2}{25} a^{7} + \frac{2}{25} a^{6} - \frac{11}{25} a^{5} + \frac{2}{5} a^{4} + \frac{6}{25} a^{3} + \frac{1}{5} a^{2} - \frac{8}{25} a + \frac{6}{25}$, $\frac{1}{25} a^{13} + \frac{2}{25} a^{11} + \frac{1}{25} a^{10} - \frac{1}{25} a^{8} - \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{6}{25} a^{5} + \frac{11}{25} a^{4} - \frac{1}{25} a^{3} + \frac{12}{25} a^{2} - \frac{11}{25} a - \frac{1}{25}$, $\frac{1}{25} a^{14} - \frac{1}{25} a^{11} - \frac{1}{25} a^{10} + \frac{1}{25} a^{9} + \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} - \frac{7}{25} a^{5} - \frac{1}{25} a^{4} - \frac{1}{5} a^{3} - \frac{1}{25} a^{2} + \frac{1}{5} a + \frac{3}{25}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{10} + \frac{3}{25} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{11}{25}$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{11} - \frac{2}{25} a^{6} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{6}{25} a - \frac{1}{5}$, $\frac{1}{25} a^{17} + \frac{1}{25} a^{11} - \frac{2}{25} a^{10} - \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{1}{25} a^{7} + \frac{2}{25} a^{6} + \frac{4}{25} a^{5} - \frac{9}{25} a^{3} + \frac{11}{25} a^{2} + \frac{2}{25} a - \frac{9}{25}$, $\frac{1}{125} a^{18} - \frac{1}{125} a^{17} - \frac{2}{125} a^{16} + \frac{1}{125} a^{15} - \frac{1}{125} a^{13} + \frac{1}{125} a^{12} + \frac{2}{125} a^{11} + \frac{9}{125} a^{10} + \frac{2}{25} a^{9} + \frac{3}{125} a^{8} + \frac{7}{125} a^{7} - \frac{1}{125} a^{6} + \frac{48}{125} a^{5} + \frac{1}{25} a^{4} + \frac{26}{125} a^{3} - \frac{16}{125} a^{2} - \frac{27}{125} a + \frac{26}{125}$, $\frac{1}{125} a^{19} + \frac{2}{125} a^{17} - \frac{1}{125} a^{16} + \frac{1}{125} a^{15} - \frac{1}{125} a^{14} - \frac{2}{125} a^{12} + \frac{11}{125} a^{11} - \frac{6}{125} a^{10} - \frac{12}{125} a^{9} + \frac{2}{25} a^{8} - \frac{4}{125} a^{7} - \frac{3}{125} a^{6} + \frac{28}{125} a^{5} - \frac{19}{125} a^{4} - \frac{8}{25} a^{3} + \frac{62}{125} a^{2} + \frac{49}{125} a + \frac{1}{125}$, $\frac{1}{125} a^{20} + \frac{1}{125} a^{17} + \frac{2}{125} a^{15} - \frac{1}{125} a^{12} + \frac{2}{25} a^{11} + \frac{2}{25} a^{10} + \frac{3}{125} a^{7} - \frac{1}{25} a^{6} - \frac{8}{25} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{6}{125} a^{2} + \frac{11}{25} a - \frac{57}{125}$, $\frac{1}{125} a^{21} + \frac{1}{125} a^{17} - \frac{1}{125} a^{16} - \frac{1}{125} a^{15} - \frac{1}{125} a^{12} + \frac{3}{125} a^{11} + \frac{11}{125} a^{10} + \frac{2}{25} a^{8} + \frac{8}{125} a^{7} + \frac{1}{125} a^{6} + \frac{37}{125} a^{5} - \frac{6}{25} a^{4} + \frac{4}{25} a^{3} + \frac{46}{125} a^{2} - \frac{11}{25} a - \frac{11}{125}$, $\frac{1}{13885858676604917216385009975295692784940780125} a^{22} - \frac{7987001408115921457583165034260688822037897}{2777171735320983443277001995059138556988156025} a^{21} - \frac{13446291224706215310141536958114168412030733}{13885858676604917216385009975295692784940780125} a^{20} + \frac{51301707587099360591575907907143561515968109}{13885858676604917216385009975295692784940780125} a^{19} + \frac{6914201656413445224808990774198373487359572}{2777171735320983443277001995059138556988156025} a^{18} + \frac{752858668721357223820213492001412046784529}{2777171735320983443277001995059138556988156025} a^{17} - \frac{212365809036963713365088332230580461291544493}{13885858676604917216385009975295692784940780125} a^{16} + \frac{198882664333388945150816518218766086768065137}{13885858676604917216385009975295692784940780125} a^{15} + \frac{220124857431907557444368570776267942686620641}{13885858676604917216385009975295692784940780125} a^{14} - \frac{6319281011112741771546540833302416953872019}{555434347064196688655400399011827711397631205} a^{13} - \frac{5231885565445237366534801052441922130839283}{13885858676604917216385009975295692784940780125} a^{12} + \frac{767093377401386678578034580459468992909571148}{13885858676604917216385009975295692784940780125} a^{11} + \frac{1365280777225700727318816529872778251491478802}{13885858676604917216385009975295692784940780125} a^{10} - \frac{1287584068109091555960069668664393548557957143}{13885858676604917216385009975295692784940780125} a^{9} - \frac{10436632913915376735526396308602790324045744}{2777171735320983443277001995059138556988156025} a^{8} + \frac{657502418426947509984107688093549085847418484}{13885858676604917216385009975295692784940780125} a^{7} + \frac{366696161039752522817992308110293625453079971}{13885858676604917216385009975295692784940780125} a^{6} - \frac{6836839098282172162057649733184156104645738146}{13885858676604917216385009975295692784940780125} a^{5} + \frac{5364659310291942282515091058512761015639388704}{13885858676604917216385009975295692784940780125} a^{4} - \frac{220478372755964802893035853526742121674089681}{2777171735320983443277001995059138556988156025} a^{3} - \frac{3672242348012347902638067496444681948497175599}{13885858676604917216385009975295692784940780125} a^{2} - \frac{1494493912696753878254798016921630536517985368}{13885858676604917216385009975295692784940780125} a - \frac{6802703091103435022633705868913177334757970191}{13885858676604917216385009975295692784940780125}$, $\frac{1}{14320646185603515073149911099972371322886344924882924499866400125} a^{23} + \frac{397495542267170923}{14320646185603515073149911099972371322886344924882924499866400125} a^{22} + \frac{44165490586060263410990716295507663752577492072506126059949326}{14320646185603515073149911099972371322886344924882924499866400125} a^{21} + \frac{53698166099739247445977287308728389124618246227737363559951678}{14320646185603515073149911099972371322886344924882924499866400125} a^{20} - \frac{35329840489786402983104005137767926484563112461283586343192371}{14320646185603515073149911099972371322886344924882924499866400125} a^{19} - \frac{1956790389656330112184960739487043893738240412112298473857581}{2864129237120703014629982219994474264577268984976584899973280025} a^{18} + \frac{24959177010139034503423229017463240863564975246557340558708463}{14320646185603515073149911099972371322886344924882924499866400125} a^{17} - \frac{251249025105322996160781806958787112987681829117394169823429123}{14320646185603515073149911099972371322886344924882924499866400125} a^{16} + \frac{274948990972673024615787412095139691789493658252784626067864131}{14320646185603515073149911099972371322886344924882924499866400125} a^{15} + \frac{91249857346440575564701953089911367980616964726093853934217826}{14320646185603515073149911099972371322886344924882924499866400125} a^{14} + \frac{120300928595290597929030887392944106940719548229806742495057392}{14320646185603515073149911099972371322886344924882924499866400125} a^{13} + \frac{49388409858318816153885571427423537376307178448963669746723268}{14320646185603515073149911099972371322886344924882924499866400125} a^{12} + \frac{238223849922182900697968017612102746848652188759085575617136591}{2864129237120703014629982219994474264577268984976584899973280025} a^{11} + \frac{95582120809972443784685275803013086745356599882756694304126389}{2864129237120703014629982219994474264577268984976584899973280025} a^{10} - \frac{715038288296651140829346637667316156538039287702218834279679738}{14320646185603515073149911099972371322886344924882924499866400125} a^{9} + \frac{192093442723011653699416548775228392237735419742389999322719739}{14320646185603515073149911099972371322886344924882924499866400125} a^{8} - \frac{1215047414223871719452165665888420224688728086018349038766076354}{14320646185603515073149911099972371322886344924882924499866400125} a^{7} - \frac{255090538719802631255635501253609899395017073118880851048902334}{2864129237120703014629982219994474264577268984976584899973280025} a^{6} + \frac{652937070794737281922205592715814495978539126035831252340024572}{2864129237120703014629982219994474264577268984976584899973280025} a^{5} - \frac{3934040065611495743048335318496204387560573897391592124966940786}{14320646185603515073149911099972371322886344924882924499866400125} a^{4} - \frac{7060469055047201153047399031837043114338387230329759721989568234}{14320646185603515073149911099972371322886344924882924499866400125} a^{3} + \frac{4306825899557539747041563658439339076634729195529209855071221246}{14320646185603515073149911099972371322886344924882924499866400125} a^{2} + \frac{26326530077529203963155889147955434791488501769393012259513496}{126731382173482434275662930088251073653861459512238269910322125} a + \frac{5787170198637107573129316163489419164873818618503074434817617574}{14320646185603515073149911099972371322886344924882924499866400125}$
Class group and class number
$C_{25812562}$, which has order $25812562$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39019312.21180779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{16})^+\), 6.6.1229312.1, 8.0.1342177280000.1, 12.12.49519263525896192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | R | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |