Normalized defining polynomial
\( x^{24} - 10 x^{18} - 629 x^{12} - 7290 x^{6} + 531441 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7903096552035517335267182427091501056=2^{24}\cdot 3^{36}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(396=2^{2}\cdot 3^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{396}(1,·)$, $\chi_{396}(131,·)$, $\chi_{396}(133,·)$, $\chi_{396}(263,·)$, $\chi_{396}(265,·)$, $\chi_{396}(395,·)$, $\chi_{396}(67,·)$, $\chi_{396}(23,·)$, $\chi_{396}(89,·)$, $\chi_{396}(331,·)$, $\chi_{396}(155,·)$, $\chi_{396}(221,·)$, $\chi_{396}(199,·)$, $\chi_{396}(287,·)$, $\chi_{396}(353,·)$, $\chi_{396}(197,·)$, $\chi_{396}(65,·)$, $\chi_{396}(43,·)$, $\chi_{396}(109,·)$, $\chi_{396}(175,·)$, $\chi_{396}(241,·)$, $\chi_{396}(307,·)$, $\chi_{396}(373,·)$, $\chi_{396}(329,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{16} a^{12} + \frac{3}{16} a^{6} - \frac{7}{16}$, $\frac{1}{48} a^{13} - \frac{13}{48} a^{7} - \frac{23}{48} a$, $\frac{1}{144} a^{14} + \frac{35}{144} a^{8} - \frac{71}{144} a^{2}$, $\frac{1}{432} a^{15} + \frac{179}{432} a^{9} + \frac{73}{432} a^{3}$, $\frac{1}{1296} a^{16} - \frac{253}{1296} a^{10} + \frac{505}{1296} a^{4}$, $\frac{1}{3888} a^{17} - \frac{253}{3888} a^{11} + \frac{1801}{3888} a^{5}$, $\frac{1}{7336656} a^{18} + \frac{73}{11664} a^{12} - \frac{2917}{11664} a^{6} + \frac{1253}{5032}$, $\frac{1}{22009968} a^{19} + \frac{73}{34992} a^{13} + \frac{8747}{34992} a^{7} - \frac{3779}{15096} a$, $\frac{1}{66029904} a^{20} + \frac{73}{104976} a^{14} - \frac{26245}{104976} a^{8} + \frac{11317}{45288} a^{2}$, $\frac{1}{198089712} a^{21} + \frac{73}{314928} a^{15} - \frac{131221}{314928} a^{9} + \frac{56605}{135864} a^{3}$, $\frac{1}{594269136} a^{22} + \frac{73}{944784} a^{16} - \frac{131221}{944784} a^{10} + \frac{56605}{407592} a^{4}$, $\frac{1}{1782807408} a^{23} + \frac{73}{2834352} a^{17} - \frac{1076005}{2834352} a^{11} + \frac{56605}{1222776} a^{5}$
Class group and class number
$C_{39}$, which has order $39$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1801}{1782807408} a^{23} - \frac{253}{2834352} a^{17} + \frac{1801}{2834352} a^{11} + \frac{9005}{1222776} a^{5} \) (order $36$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 211275649.8529983 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ | |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |