Normalized defining polynomial
\( x^{24} + 56 x^{22} + 1316 x^{20} + 17024 x^{18} + 133770 x^{16} + 665616 x^{14} + 2124248 x^{12} + 4313568 x^{10} + 5419400 x^{8} + 4006240 x^{6} + 1613472 x^{4} + 307328 x^{2} + 19208 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(790224330201082600125157415256880139617697792=2^{93}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(224=2^{5}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{224}(1,·)$, $\chi_{224}(5,·)$, $\chi_{224}(193,·)$, $\chi_{224}(9,·)$, $\chi_{224}(13,·)$, $\chi_{224}(45,·)$, $\chi_{224}(81,·)$, $\chi_{224}(213,·)$, $\chi_{224}(121,·)$, $\chi_{224}(25,·)$, $\chi_{224}(157,·)$, $\chi_{224}(69,·)$, $\chi_{224}(101,·)$, $\chi_{224}(65,·)$, $\chi_{224}(113,·)$, $\chi_{224}(169,·)$, $\chi_{224}(173,·)$, $\chi_{224}(125,·)$, $\chi_{224}(177,·)$, $\chi_{224}(181,·)$, $\chi_{224}(137,·)$, $\chi_{224}(57,·)$, $\chi_{224}(61,·)$, $\chi_{224}(117,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{14} a^{8}$, $\frac{1}{14} a^{9}$, $\frac{1}{14} a^{10}$, $\frac{1}{14} a^{11}$, $\frac{1}{98} a^{12}$, $\frac{1}{98} a^{13}$, $\frac{1}{98} a^{14}$, $\frac{1}{98} a^{15}$, $\frac{1}{196} a^{16}$, $\frac{1}{196} a^{17}$, $\frac{1}{1372} a^{18}$, $\frac{1}{1372} a^{19}$, $\frac{1}{155036} a^{20} + \frac{25}{155036} a^{18} - \frac{9}{5537} a^{16} + \frac{27}{11074} a^{14} + \frac{53}{11074} a^{12} + \frac{22}{791} a^{10} - \frac{27}{1582} a^{8} - \frac{48}{791} a^{6} + \frac{50}{113} a^{4} - \frac{53}{113} a^{2} + \frac{7}{113}$, $\frac{1}{155036} a^{21} + \frac{25}{155036} a^{19} - \frac{9}{5537} a^{17} + \frac{27}{11074} a^{15} + \frac{53}{11074} a^{13} + \frac{22}{791} a^{11} - \frac{27}{1582} a^{9} - \frac{48}{791} a^{7} + \frac{50}{113} a^{5} - \frac{53}{113} a^{3} + \frac{7}{113} a$, $\frac{1}{3594199588} a^{22} + \frac{3}{9263401} a^{20} - \frac{494063}{3594199588} a^{18} - \frac{93010}{128364271} a^{16} - \frac{152879}{36675506} a^{14} - \frac{5314}{128364271} a^{12} - \frac{9847}{378098} a^{10} + \frac{551}{162281} a^{8} + \frac{16454}{2619679} a^{6} - \frac{961572}{2619679} a^{4} + \frac{603289}{2619679} a^{2} + \frac{727670}{2619679}$, $\frac{1}{3594199588} a^{23} + \frac{3}{9263401} a^{21} - \frac{494063}{3594199588} a^{19} - \frac{93010}{128364271} a^{17} - \frac{152879}{36675506} a^{15} - \frac{5314}{128364271} a^{13} - \frac{9847}{378098} a^{11} + \frac{551}{162281} a^{9} + \frac{16454}{2619679} a^{7} - \frac{961572}{2619679} a^{5} + \frac{603289}{2619679} a^{3} + \frac{727670}{2619679} a$
Class group and class number
$C_{2}\times C_{26146}$, which has order $52292$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39019312.21180779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{16})^+\), 6.6.1229312.1, 8.0.5156108238848.1, 12.12.49519263525896192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | $24$ | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |