Normalized defining polynomial
\( x^{24} + 33 x^{22} + 436 x^{20} + 2997 x^{18} + 11783 x^{16} + 27783 x^{14} + 40285 x^{12} + 36003 x^{10} + 19363 x^{8} + 5922 x^{6} + 931 x^{4} + 63 x^{2} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(77844331621911754501328896000000000000=2^{24}\cdot 5^{12}\cdot 13^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(260=2^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{260}(1,·)$, $\chi_{260}(259,·)$, $\chi_{260}(69,·)$, $\chi_{260}(51,·)$, $\chi_{260}(129,·)$, $\chi_{260}(9,·)$, $\chi_{260}(139,·)$, $\chi_{260}(231,·)$, $\chi_{260}(79,·)$, $\chi_{260}(81,·)$, $\chi_{260}(131,·)$, $\chi_{260}(211,·)$, $\chi_{260}(29,·)$, $\chi_{260}(159,·)$, $\chi_{260}(101,·)$, $\chi_{260}(209,·)$, $\chi_{260}(199,·)$, $\chi_{260}(49,·)$, $\chi_{260}(179,·)$, $\chi_{260}(181,·)$, $\chi_{260}(121,·)$, $\chi_{260}(251,·)$, $\chi_{260}(61,·)$, $\chi_{260}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{69271526267} a^{22} + \frac{7322951344}{69271526267} a^{20} + \frac{12927355857}{69271526267} a^{18} - \frac{34372883738}{69271526267} a^{16} - \frac{34094544437}{69271526267} a^{14} - \frac{16198948921}{69271526267} a^{12} + \frac{1247984216}{69271526267} a^{10} + \frac{28407819091}{69271526267} a^{8} - \frac{18122206093}{69271526267} a^{6} - \frac{16123745477}{69271526267} a^{4} + \frac{32481864334}{69271526267} a^{2} - \frac{7567604524}{69271526267}$, $\frac{1}{69271526267} a^{23} + \frac{7322951344}{69271526267} a^{21} + \frac{12927355857}{69271526267} a^{19} - \frac{34372883738}{69271526267} a^{17} - \frac{34094544437}{69271526267} a^{15} - \frac{16198948921}{69271526267} a^{13} + \frac{1247984216}{69271526267} a^{11} + \frac{28407819091}{69271526267} a^{9} - \frac{18122206093}{69271526267} a^{7} - \frac{16123745477}{69271526267} a^{5} + \frac{32481864334}{69271526267} a^{3} - \frac{7567604524}{69271526267} a$
Class group and class number
$C_{4}\times C_{4}\times C_{12}$, which has order $192$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{360845}{3788849} a^{23} - \frac{12252940}{3788849} a^{21} - \frac{168794505}{3788849} a^{19} - \frac{1233987035}{3788849} a^{17} - \frac{5304248225}{3788849} a^{15} - \frac{14132751566}{3788849} a^{13} - \frac{23887975392}{3788849} a^{11} - \frac{25388167555}{3788849} a^{9} - \frac{16240133884}{3788849} a^{7} - \frac{5707052397}{3788849} a^{5} - \frac{917581164}{3788849} a^{3} - \frac{43158198}{3788849} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7346081.887826216 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |