Properties

Label 24.0.77133116990...8352.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{24}\cdot 13^{16}\cdot 17^{21}$
Root discriminant $131.92$
Ramified primes $2, 13, 17$
Class number $1060516$ (GRH)
Class group $[2, 530258]$ (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![161501293, 457755938, 976659364, 912724280, 626540010, 203608140, -28182313, -68610260, -24939133, -1257480, 7877438, 715344, 426718, -883492, 242761, -93292, 64416, -24730, 8913, -3268, 956, -214, 47, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^23 + 47*x^22 - 214*x^21 + 956*x^20 - 3268*x^19 + 8913*x^18 - 24730*x^17 + 64416*x^16 - 93292*x^15 + 242761*x^14 - 883492*x^13 + 426718*x^12 + 715344*x^11 + 7877438*x^10 - 1257480*x^9 - 24939133*x^8 - 68610260*x^7 - 28182313*x^6 + 203608140*x^5 + 626540010*x^4 + 912724280*x^3 + 976659364*x^2 + 457755938*x + 161501293)
 
gp: K = bnfinit(x^24 - 8*x^23 + 47*x^22 - 214*x^21 + 956*x^20 - 3268*x^19 + 8913*x^18 - 24730*x^17 + 64416*x^16 - 93292*x^15 + 242761*x^14 - 883492*x^13 + 426718*x^12 + 715344*x^11 + 7877438*x^10 - 1257480*x^9 - 24939133*x^8 - 68610260*x^7 - 28182313*x^6 + 203608140*x^5 + 626540010*x^4 + 912724280*x^3 + 976659364*x^2 + 457755938*x + 161501293, 1)
 

Normalized defining polynomial

\( x^{24} - 8 x^{23} + 47 x^{22} - 214 x^{21} + 956 x^{20} - 3268 x^{19} + 8913 x^{18} - 24730 x^{17} + 64416 x^{16} - 93292 x^{15} + 242761 x^{14} - 883492 x^{13} + 426718 x^{12} + 715344 x^{11} + 7877438 x^{10} - 1257480 x^{9} - 24939133 x^{8} - 68610260 x^{7} - 28182313 x^{6} + 203608140 x^{5} + 626540010 x^{4} + 912724280 x^{3} + 976659364 x^{2} + 457755938 x + 161501293 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(771331169903802522095823068539961341836284345188352=2^{24}\cdot 13^{16}\cdot 17^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $131.92$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(884=2^{2}\cdot 13\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{884}(1,·)$, $\chi_{884}(451,·)$, $\chi_{884}(625,·)$, $\chi_{884}(263,·)$, $\chi_{884}(781,·)$, $\chi_{884}(399,·)$, $\chi_{884}(81,·)$, $\chi_{884}(835,·)$, $\chi_{884}(341,·)$, $\chi_{884}(87,·)$, $\chi_{884}(217,·)$, $\chi_{884}(859,·)$, $\chi_{884}(157,·)$, $\chi_{884}(287,·)$, $\chi_{884}(763,·)$, $\chi_{884}(807,·)$, $\chi_{884}(237,·)$, $\chi_{884}(477,·)$, $\chi_{884}(497,·)$, $\chi_{884}(627,·)$, $\chi_{884}(495,·)$, $\chi_{884}(373,·)$, $\chi_{884}(633,·)$, $\chi_{884}(315,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{52} a^{18} - \frac{3}{26} a^{17} - \frac{5}{52} a^{16} - \frac{7}{26} a^{15} - \frac{15}{52} a^{14} - \frac{7}{26} a^{13} + \frac{7}{52} a^{12} - \frac{1}{26} a^{11} - \frac{11}{26} a^{10} - \frac{5}{26} a^{9} + \frac{23}{52} a^{8} - \frac{11}{26} a^{7} + \frac{1}{52} a^{6} + \frac{1}{13} a^{5} + \frac{11}{52} a^{4} + \frac{6}{13} a^{3} + \frac{17}{52} a^{2} + \frac{11}{26} a + \frac{21}{52}$, $\frac{1}{52} a^{19} + \frac{11}{52} a^{17} + \frac{2}{13} a^{16} + \frac{5}{52} a^{15} - \frac{25}{52} a^{13} - \frac{3}{13} a^{12} + \frac{9}{26} a^{11} + \frac{7}{26} a^{10} + \frac{15}{52} a^{9} + \frac{3}{13} a^{8} + \frac{25}{52} a^{7} + \frac{5}{26} a^{6} - \frac{17}{52} a^{5} - \frac{7}{26} a^{4} + \frac{5}{52} a^{3} + \frac{5}{13} a^{2} - \frac{3}{52} a + \frac{11}{26}$, $\frac{1}{676} a^{20} + \frac{1}{338} a^{19} - \frac{1}{169} a^{18} - \frac{9}{169} a^{17} - \frac{41}{169} a^{16} - \frac{36}{169} a^{15} + \frac{11}{169} a^{14} + \frac{76}{169} a^{13} - \frac{163}{676} a^{12} - \frac{58}{169} a^{11} + \frac{61}{676} a^{10} - \frac{69}{169} a^{9} - \frac{35}{169} a^{8} + \frac{1}{26} a^{7} + \frac{23}{169} a^{6} + \frac{25}{169} a^{5} + \frac{18}{169} a^{4} + \frac{69}{338} a^{3} - \frac{161}{338} a^{2} + \frac{77}{338} a + \frac{93}{676}$, $\frac{1}{676} a^{21} + \frac{5}{676} a^{19} - \frac{1}{338} a^{18} - \frac{105}{676} a^{17} + \frac{79}{338} a^{16} + \frac{33}{676} a^{15} - \frac{87}{338} a^{14} - \frac{27}{169} a^{13} + \frac{30}{169} a^{12} + \frac{31}{676} a^{11} - \frac{28}{169} a^{10} - \frac{329}{676} a^{9} - \frac{73}{169} a^{8} - \frac{207}{676} a^{7} + \frac{18}{169} a^{6} - \frac{245}{676} a^{5} + \frac{49}{338} a^{4} + \frac{7}{52} a^{3} + \frac{37}{169} a^{2} + \frac{159}{338} a - \frac{15}{338}$, $\frac{1}{110452376319708052270006955879155206392948} a^{22} - \frac{10425722207550289322555048134537782883}{110452376319708052270006955879155206392948} a^{21} + \frac{27027060786010711917433202550376442219}{55226188159854026135003477939577603196474} a^{20} - \frac{651184959941726753724857343007599442763}{110452376319708052270006955879155206392948} a^{19} - \frac{629481831996550308457371818720932046377}{110452376319708052270006955879155206392948} a^{18} + \frac{44380566732233942592407869528838392411589}{110452376319708052270006955879155206392948} a^{17} + \frac{712877396922338329864604242463923271291}{2350050559993788346170360763386280987084} a^{16} - \frac{24009404122672920953804025925334927081581}{110452376319708052270006955879155206392948} a^{15} + \frac{13700115677142431017028893755393636914290}{27613094079927013067501738969788801598237} a^{14} + \frac{9449359592806246502135399649991485479905}{27613094079927013067501738969788801598237} a^{13} - \frac{13460693931931774259464653049730985419973}{55226188159854026135003477939577603196474} a^{12} + \frac{16196594522097490047968634699456769950111}{110452376319708052270006955879155206392948} a^{11} + \frac{590948221835064518019880546801061903753}{2124084159994385620577056843829907815249} a^{10} - \frac{12305892600927794410170603776628572861009}{110452376319708052270006955879155206392948} a^{9} - \frac{16898031689034606293120499412451611610489}{110452376319708052270006955879155206392948} a^{8} - \frac{41030194664506371109316790719593903720337}{110452376319708052270006955879155206392948} a^{7} + \frac{2259032888327947940762873282239327694273}{110452376319708052270006955879155206392948} a^{6} + \frac{16573201160493998428082142809209505782181}{110452376319708052270006955879155206392948} a^{5} - \frac{36156363103588579553085689834340637773017}{110452376319708052270006955879155206392948} a^{4} + \frac{22072656916139920472161653173726068712117}{110452376319708052270006955879155206392948} a^{3} - \frac{27147328809562101254474251382650369218063}{55226188159854026135003477939577603196474} a^{2} + \frac{25527023411879535261685832056445515076701}{55226188159854026135003477939577603196474} a + \frac{42359238121920513605168987261612604364745}{110452376319708052270006955879155206392948}$, $\frac{1}{185179765465295138645910495968447614148844610588012932164} a^{23} + \frac{365508705147125}{92589882732647569322955247984223807074422305294006466082} a^{22} + \frac{14631046605951844745693265209380996391753112184648033}{46294941366323784661477623992111903537211152647003233041} a^{21} + \frac{63912822138278287517792657196774846317760032067958217}{92589882732647569322955247984223807074422305294006466082} a^{20} + \frac{1171662779908709161017442141584041760402319947311105459}{185179765465295138645910495968447614148844610588012932164} a^{19} - \frac{297769194964647609159921085380712830401896990920420771}{92589882732647569322955247984223807074422305294006466082} a^{18} + \frac{12853151156646082003987155362510037408592408085513528397}{185179765465295138645910495968447614148844610588012932164} a^{17} - \frac{34197583048294226854870665830072272964475549911014468059}{92589882732647569322955247984223807074422305294006466082} a^{16} - \frac{15150640331877759840336094753287294341430708422844546721}{46294941366323784661477623992111903537211152647003233041} a^{15} + \frac{26110848269927011016013284587163203301501383417257626753}{92589882732647569322955247984223807074422305294006466082} a^{14} - \frac{26066690027416912815327392430625182222623110357918481467}{92589882732647569322955247984223807074422305294006466082} a^{13} - \frac{10092477118891371870793019373800525217435822435557486647}{46294941366323784661477623992111903537211152647003233041} a^{12} - \frac{17887547931933776302348745372936433764353677297287190205}{92589882732647569322955247984223807074422305294006466082} a^{11} - \frac{42127521642367295008916013488539265661821856387174221709}{92589882732647569322955247984223807074422305294006466082} a^{10} + \frac{67312493489103350616640334425647121795764838496706639149}{185179765465295138645910495968447614148844610588012932164} a^{9} - \frac{36375567324169682931809854444456181226958906364832511293}{92589882732647569322955247984223807074422305294006466082} a^{8} + \frac{52578177731419496528395791180715342121500295640133153431}{185179765465295138645910495968447614148844610588012932164} a^{7} + \frac{5261377249966059861380032067511528621762040681353727509}{92589882732647569322955247984223807074422305294006466082} a^{6} + \frac{75390894362215345364273020102394304974620096782271222743}{185179765465295138645910495968447614148844610588012932164} a^{5} - \frac{9555233329952933414198576372872777912729353783360768469}{92589882732647569322955247984223807074422305294006466082} a^{4} - \frac{12605472246158154321075107393326787616348985464922108567}{46294941366323784661477623992111903537211152647003233041} a^{3} - \frac{29655535917179970541733832537540415728501754029892126961}{92589882732647569322955247984223807074422305294006466082} a^{2} - \frac{4768751794024956677783259240838371561376386677849359565}{185179765465295138645910495968447614148844610588012932164} a + \frac{9521730699300457094691443552042222957127050854369695605}{92589882732647569322955247984223807074422305294006466082}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{530258}$, which has order $1060516$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2336441224.9148784 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), 3.3.169.1, 4.4.4913.1, 6.6.140320193.1, 8.0.105046700288.1, 12.12.96735773996756764337.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $24$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{3}$ $24$ $24$ R R ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ $24$ $24$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{3}$ $24$ $24$ ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{24}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
$13$13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
17Data not computed