Normalized defining polynomial
\( x^{24} - x^{23} + 6 x^{22} - 7 x^{21} + 27 x^{20} - 19 x^{19} + 94 x^{18} - 58 x^{17} + 317 x^{16} - 205 x^{15} + 643 x^{14} - 353 x^{13} + 1114 x^{12} - 86 x^{11} + 1318 x^{10} - 237 x^{9} + 1501 x^{8} - 593 x^{7} + 614 x^{6} - 193 x^{5} + 250 x^{4} + 59 x^{3} + 15 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72498183345339963679508209228515625=5^{18}\cdot 13^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(65=5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{65}(64,·)$, $\chi_{65}(1,·)$, $\chi_{65}(3,·)$, $\chi_{65}(4,·)$, $\chi_{65}(9,·)$, $\chi_{65}(12,·)$, $\chi_{65}(14,·)$, $\chi_{65}(16,·)$, $\chi_{65}(17,·)$, $\chi_{65}(22,·)$, $\chi_{65}(23,·)$, $\chi_{65}(27,·)$, $\chi_{65}(29,·)$, $\chi_{65}(36,·)$, $\chi_{65}(38,·)$, $\chi_{65}(42,·)$, $\chi_{65}(43,·)$, $\chi_{65}(48,·)$, $\chi_{65}(49,·)$, $\chi_{65}(51,·)$, $\chi_{65}(53,·)$, $\chi_{65}(56,·)$, $\chi_{65}(61,·)$, $\chi_{65}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1445643759919} a^{21} - \frac{545276790517}{1445643759919} a^{20} + \frac{615546033350}{1445643759919} a^{19} - \frac{450642466093}{1445643759919} a^{18} - \frac{98378289150}{1445643759919} a^{17} + \frac{31198496828}{1445643759919} a^{16} + \frac{529838603505}{1445643759919} a^{15} + \frac{113352996699}{1445643759919} a^{14} - \frac{564197865009}{1445643759919} a^{13} + \frac{16331163075}{1445643759919} a^{12} - \frac{15567765193}{1445643759919} a^{11} - \frac{141867390675}{1445643759919} a^{10} - \frac{300826242972}{1445643759919} a^{9} - \frac{208465917818}{1445643759919} a^{8} + \frac{508367897020}{1445643759919} a^{7} - \frac{636551380589}{1445643759919} a^{6} - \frac{107303772139}{1445643759919} a^{5} - \frac{700355649864}{1445643759919} a^{4} + \frac{674570434851}{1445643759919} a^{3} + \frac{371462421767}{1445643759919} a^{2} - \frac{685643609770}{1445643759919} a - \frac{195689327083}{1445643759919}$, $\frac{1}{1445643759919} a^{22} - \frac{11518196924}{1445643759919} a^{20} - \frac{467276115929}{1445643759919} a^{19} + \frac{409685131303}{1445643759919} a^{18} - \frac{557375797327}{1445643759919} a^{17} + \frac{149281353153}{1445643759919} a^{16} + \frac{386299897432}{1445643759919} a^{15} + \frac{514143645886}{1445643759919} a^{14} - \frac{674526751747}{1445643759919} a^{13} + \frac{150765032714}{1445643759919} a^{12} - \frac{496141072407}{1445643759919} a^{11} + \frac{123635468964}{1445643759919} a^{10} - \frac{484124230646}{1445643759919} a^{9} - \frac{694772769238}{1445643759919} a^{8} + \frac{376286591203}{1445643759919} a^{7} + \frac{650871630636}{1445643759919} a^{6} + \frac{443994073545}{1445643759919} a^{5} - \frac{4893280191}{1445643759919} a^{4} - \frac{166106579447}{1445643759919} a^{3} - \frac{530482488819}{1445643759919} a^{2} + \frac{166490853936}{1445643759919} a - \frac{290199457394}{1445643759919}$, $\frac{1}{1445643759919} a^{23} - \frac{2921529482}{1445643759919} a^{20} + \frac{624776915251}{1445643759919} a^{19} + \frac{149734378737}{1445643759919} a^{18} - \frac{585348258765}{1445643759919} a^{17} - \frac{94937716659}{1445643759919} a^{16} - \frac{298676141967}{1445643759919} a^{15} - \frac{61454505577}{1445643759919} a^{14} + \frac{387113597936}{1445643759919} a^{13} + \frac{543085858416}{1445643759919} a^{12} - \frac{36957153463}{1445643759919} a^{11} + \frac{351554201768}{1445643759919} a^{10} + \frac{528222622044}{1445643759919} a^{9} + \frac{694909117606}{1445643759919} a^{8} + \frac{643944498019}{1445643759919} a^{7} + \frac{363349832697}{1445643759919} a^{6} - \frac{138138769758}{1445643759919} a^{5} - \frac{669101080326}{1445643759919} a^{4} - \frac{707601791392}{1445643759919} a^{3} - \frac{435431176893}{1445643759919} a^{2} - \frac{115414909970}{1445643759919} a + \frac{577837003617}{1445643759919}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{341728824381}{1445643759919} a^{23} - \frac{336966501786}{1445643759919} a^{22} + \frac{2049420481767}{1445643759919} a^{21} - \frac{2373052480287}{1445643759919} a^{20} + \frac{9219314197064}{1445643759919} a^{19} - \frac{6421412824314}{1445643759919} a^{18} + \frac{32156798214498}{1445643759919} a^{17} - \frac{149416667967}{11035448549} a^{16} + \frac{108434713354905}{1445643759919} a^{15} - \frac{69218274924038}{1445643759919} a^{14} + \frac{220007848787493}{1445643759919} a^{13} - \frac{119905449507534}{1445643759919} a^{12} + \frac{381665043885966}{1445643759919} a^{11} - \frac{28215242609358}{1445643759919} a^{10} + \frac{454112955994722}{1445643759919} a^{9} - \frac{79785816226281}{1445643759919} a^{8} + \frac{513799803179133}{1445643759919} a^{7} - \frac{202625191103034}{1445643759919} a^{6} + \frac{210222485732433}{1445643759919} a^{5} - \frac{73055463437345}{1445643759919} a^{4} + \frac{85726517631621}{1445643759919} a^{3} + \frac{20232483012885}{1445643759919} a^{2} + \frac{5143076727057}{1445643759919} a + \frac{1028996331219}{1445643759919} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7346081.887826216 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13 | Data not computed | ||||||