Normalized defining polynomial
\( x^{24} - 15 x^{22} + 158 x^{20} - 789 x^{18} + 2798 x^{16} - 5124 x^{14} + 6639 x^{12} - 5271 x^{10} + 3030 x^{8} - 1062 x^{6} + 253 x^{4} - 18 x^{2} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(72340856237421875367936000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(331,·)$, $\chi_{420}(389,·)$, $\chi_{420}(71,·)$, $\chi_{420}(11,·)$, $\chi_{420}(79,·)$, $\chi_{420}(401,·)$, $\chi_{420}(211,·)$, $\chi_{420}(149,·)$, $\chi_{420}(151,·)$, $\chi_{420}(281,·)$, $\chi_{420}(239,·)$, $\chi_{420}(29,·)$, $\chi_{420}(289,·)$, $\chi_{420}(359,·)$, $\chi_{420}(169,·)$, $\chi_{420}(109,·)$, $\chi_{420}(221,·)$, $\chi_{420}(319,·)$, $\chi_{420}(179,·)$, $\chi_{420}(361,·)$, $\chi_{420}(121,·)$, $\chi_{420}(379,·)$, $\chi_{420}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{12} + \frac{1}{8} a^{6} - \frac{3}{8}$, $\frac{1}{8} a^{19} - \frac{1}{4} a^{13} + \frac{1}{8} a^{7} - \frac{3}{8} a$, $\frac{1}{183352} a^{20} + \frac{6473}{183352} a^{18} - \frac{9019}{22919} a^{16} - \frac{39485}{91676} a^{14} + \frac{39683}{91676} a^{12} - \frac{5605}{22919} a^{10} + \frac{26393}{183352} a^{8} - \frac{64591}{183352} a^{6} - \frac{88}{22919} a^{4} - \frac{31307}{183352} a^{2} + \frac{39581}{183352}$, $\frac{1}{183352} a^{21} + \frac{6473}{183352} a^{19} - \frac{9019}{22919} a^{17} - \frac{39485}{91676} a^{15} + \frac{39683}{91676} a^{13} - \frac{5605}{22919} a^{11} + \frac{26393}{183352} a^{9} - \frac{64591}{183352} a^{7} - \frac{88}{22919} a^{5} - \frac{31307}{183352} a^{3} + \frac{39581}{183352} a$, $\frac{1}{924825837832} a^{22} - \frac{298179}{924825837832} a^{20} - \frac{18273521245}{924825837832} a^{18} - \frac{14633772693}{462412918916} a^{16} - \frac{143736184233}{462412918916} a^{14} + \frac{4144244749}{35570224532} a^{12} - \frac{98160812223}{924825837832} a^{10} - \frac{322101635347}{924825837832} a^{8} - \frac{105247252133}{924825837832} a^{6} + \frac{46938583917}{924825837832} a^{4} - \frac{29822725259}{71140449064} a^{2} + \frac{272511138511}{924825837832}$, $\frac{1}{924825837832} a^{23} - \frac{298179}{924825837832} a^{21} - \frac{18273521245}{924825837832} a^{19} - \frac{14633772693}{462412918916} a^{17} - \frac{143736184233}{462412918916} a^{15} + \frac{4144244749}{35570224532} a^{13} - \frac{98160812223}{924825837832} a^{11} - \frac{322101635347}{924825837832} a^{9} - \frac{105247252133}{924825837832} a^{7} + \frac{46938583917}{924825837832} a^{5} - \frac{29822725259}{71140449064} a^{3} + \frac{272511138511}{924825837832} a$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{148787121575}{924825837832} a^{23} + \frac{84389196267}{35570224532} a^{21} - \frac{22945059625745}{924825837832} a^{19} + \frac{55734503392911}{462412918916} a^{17} - \frac{96723380662449}{231206459458} a^{15} + \frac{329284836562241}{462412918916} a^{13} - \frac{61570749574763}{71140449064} a^{11} + \frac{272297101425195}{462412918916} a^{9} - \frac{264636377210105}{924825837832} a^{7} + \frac{54766886055237}{924825837832} a^{5} - \frac{1966812984841}{462412918916} a^{3} - \frac{3161652599205}{924825837832} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39799331.07802784 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |