Normalized defining polynomial
\( x^{24} - x^{23} + 2 x^{22} + 44 x^{21} - 37 x^{20} + 67 x^{19} + 673 x^{18} - 471 x^{17} + 766 x^{16} + 4426 x^{15} - 2494 x^{14} + 3352 x^{13} + 12938 x^{12} - 5456 x^{11} + 9467 x^{10} + 11999 x^{9} + 1136 x^{8} + 25522 x^{7} - 2247 x^{6} + 4983 x^{5} + 19195 x^{4} + 1635 x^{3} + 11808 x^{2} - 2620 x + 2264 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7184983626352716099297100617536359330111417=73^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{73}(64,·)$, $\chi_{73}(1,·)$, $\chi_{73}(66,·)$, $\chi_{73}(3,·)$, $\chi_{73}(70,·)$, $\chi_{73}(7,·)$, $\chi_{73}(8,·)$, $\chi_{73}(9,·)$, $\chi_{73}(10,·)$, $\chi_{73}(17,·)$, $\chi_{73}(21,·)$, $\chi_{73}(22,·)$, $\chi_{73}(24,·)$, $\chi_{73}(72,·)$, $\chi_{73}(27,·)$, $\chi_{73}(30,·)$, $\chi_{73}(65,·)$, $\chi_{73}(43,·)$, $\chi_{73}(46,·)$, $\chi_{73}(49,·)$, $\chi_{73}(51,·)$, $\chi_{73}(52,·)$, $\chi_{73}(56,·)$, $\chi_{73}(63,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{5}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{6}$, $\frac{1}{8} a^{21} - \frac{1}{8} a^{20} - \frac{1}{8} a^{19} - \frac{1}{8} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{3}{8} a^{7} - \frac{1}{8} a^{6} - \frac{3}{8} a^{5} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{92799416} a^{22} + \frac{5502803}{92799416} a^{21} + \frac{10324031}{92799416} a^{20} - \frac{1605537}{23199854} a^{19} + \frac{2071595}{92799416} a^{18} - \frac{3267251}{46399708} a^{17} - \frac{348467}{46399708} a^{16} - \frac{8695}{11599927} a^{15} + \frac{3704537}{46399708} a^{14} + \frac{840345}{23199854} a^{13} - \frac{5464483}{23199854} a^{12} - \frac{2673035}{46399708} a^{11} + \frac{774323}{46399708} a^{10} + \frac{2706993}{46399708} a^{9} + \frac{18503167}{92799416} a^{8} + \frac{125943}{677368} a^{7} - \frac{19499487}{92799416} a^{6} - \frac{2830541}{11599927} a^{5} + \frac{9535983}{92799416} a^{4} + \frac{3584199}{11599927} a^{3} - \frac{7224569}{23199854} a^{2} - \frac{2313799}{23199854} a - \frac{5132783}{11599927}$, $\frac{1}{136759612182205480462104134975819325224} a^{23} + \frac{612060021007226827900125309077}{136759612182205480462104134975819325224} a^{22} + \frac{1895605581214615716088940693369369065}{136759612182205480462104134975819325224} a^{21} + \frac{612233901549428019836205388361007565}{34189903045551370115526033743954831306} a^{20} + \frac{14925223098593370593770035389310898187}{136759612182205480462104134975819325224} a^{19} - \frac{3623448502700539240573230080916188511}{68379806091102740231052067487909662612} a^{18} - \frac{2724660335255589337913495051291864663}{68379806091102740231052067487909662612} a^{17} + \frac{5667432534259413298997089654787771505}{68379806091102740231052067487909662612} a^{16} - \frac{15597480949044133316559684307371712011}{68379806091102740231052067487909662612} a^{15} - \frac{1338496554659675558962541228531587441}{17094951522775685057763016871977415653} a^{14} - \frac{1646632495624102578084679278463140}{45830969229961622138774844160797361} a^{13} - \frac{16574256873291149285864427678832232263}{68379806091102740231052067487909662612} a^{12} - \frac{15677882929564206506729176939375801561}{68379806091102740231052067487909662612} a^{11} + \frac{7308184529293864392350321924297844101}{68379806091102740231052067487909662612} a^{10} - \frac{23480272043451750000072628529117127925}{136759612182205480462104134975819325224} a^{9} + \frac{9044298218661291711260076762793290237}{136759612182205480462104134975819325224} a^{8} + \frac{22034829232312604769763017024772990243}{136759612182205480462104134975819325224} a^{7} - \frac{7220120925002575579623099338483443169}{34189903045551370115526033743954831306} a^{6} - \frac{10569138540467121382428467663104631353}{136759612182205480462104134975819325224} a^{5} + \frac{617372935538628682593894641288098963}{17094951522775685057763016871977415653} a^{4} - \frac{7604234673312246766653221406638766061}{34189903045551370115526033743954831306} a^{3} - \frac{30062672993169578476208280898359633529}{68379806091102740231052067487909662612} a^{2} - \frac{4899051813309070561743741783557912292}{17094951522775685057763016871977415653} a - \frac{24745794144901556028652384678062378}{60406189126415848260646702727835391}$
Class group and class number
$C_{89}$, which has order $89$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7851263416.155112 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 3.3.5329.1, 4.4.389017.1, 6.6.2073071593.1, 8.0.11047398519097.1, 12.12.313726685568359708377.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{6}$ | $24$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | $24$ | $24$ | $24$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 73 | Data not computed | ||||||