# SageMath code for working with number field 24.0.67372672480923938907623291015625.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^24 - x^23 - 2*x^22 + 5*x^21 - 4*x^20 + 8*x^19 + 15*x^18 - 59*x^17 + 26*x^16 + 114*x^15 + 34*x^14 - 119*x^13 - 10*x^12 - 196*x^11 - 198*x^10 + 289*x^9 + 559*x^8 - 307*x^7 + 22*x^6 + 46*x^5 - 22*x^4 + 12*x^3 - x^2 - 2*x + 1) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]