Normalized defining polynomial
\( x^{24} - x^{23} - 2 x^{22} + 5 x^{21} - 4 x^{20} + 8 x^{19} + 15 x^{18} - 59 x^{17} + 26 x^{16} + 114 x^{15} + 34 x^{14} - 119 x^{13} - 10 x^{12} - 196 x^{11} - 198 x^{10} + 289 x^{9} + 559 x^{8} - 307 x^{7} + 22 x^{6} + 46 x^{5} - 22 x^{4} + 12 x^{3} - x^{2} - 2 x + 1 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(67372672480923938907623291015625\)\(\medspace = 3^{12}\cdot 5^{18}\cdot 7^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $21.19$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 5, 7$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $24$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(105=3\cdot 5\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(2,·)$, $\chi_{105}(67,·)$, $\chi_{105}(4,·)$, $\chi_{105}(86,·)$, $\chi_{105}(71,·)$, $\chi_{105}(8,·)$, $\chi_{105}(74,·)$, $\chi_{105}(11,·)$, $\chi_{105}(79,·)$, $\chi_{105}(16,·)$, $\chi_{105}(22,·)$, $\chi_{105}(23,·)$, $\chi_{105}(88,·)$, $\chi_{105}(92,·)$, $\chi_{105}(29,·)$, $\chi_{105}(32,·)$, $\chi_{105}(37,·)$, $\chi_{105}(43,·)$, $\chi_{105}(44,·)$, $\chi_{105}(46,·)$, $\chi_{105}(53,·)$, $\chi_{105}(58,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{181} a^{18} + \frac{43}{181} a^{17} - \frac{48}{181} a^{15} - \frac{73}{181} a^{14} - \frac{23}{181} a^{13} + \frac{48}{181} a^{12} + \frac{65}{181} a^{11} + \frac{18}{181} a^{10} + \frac{49}{181} a^{9} + \frac{8}{181} a^{8} + \frac{62}{181} a^{7} + \frac{1}{181} a^{6} - \frac{22}{181} a^{5} - \frac{80}{181} a^{4} - \frac{1}{181} a^{3} + \frac{39}{181} a + \frac{48}{181}$, $\frac{1}{181} a^{19} - \frac{39}{181} a^{17} - \frac{48}{181} a^{16} + \frac{39}{181} a^{14} - \frac{49}{181} a^{13} - \frac{8}{181} a^{12} - \frac{62}{181} a^{11} - \frac{1}{181} a^{10} + \frac{73}{181} a^{9} + \frac{80}{181} a^{8} + \frac{50}{181} a^{7} - \frac{65}{181} a^{6} - \frac{39}{181} a^{5} + \frac{43}{181} a^{3} + \frac{39}{181} a^{2} - \frac{73}{181}$, $\frac{1}{2353} a^{20} - \frac{3}{2353} a^{19} + \frac{841}{2353} a^{17} + \frac{506}{2353} a^{16} - \frac{1109}{2353} a^{15} + \frac{969}{2353} a^{14} + \frac{509}{2353} a^{13} - \frac{881}{2353} a^{12} + \frac{186}{2353} a^{11} - \frac{127}{2353} a^{10} + \frac{505}{2353} a^{9} - \frac{59}{2353} a^{8} - \frac{1055}{2353} a^{7} + \frac{738}{2353} a^{6} - \frac{922}{2353} a^{5} + \frac{5}{13} a^{4} - \frac{310}{2353} a^{3} - \frac{9}{181} a^{2} + \frac{3}{13} a + \frac{100}{2353}$, $\frac{1}{184806973} a^{21} + \frac{26051}{184806973} a^{20} + \frac{32884}{184806973} a^{19} - \frac{111037}{184806973} a^{18} - \frac{28576544}{184806973} a^{17} + \frac{82830352}{184806973} a^{16} - \frac{79766532}{184806973} a^{15} - \frac{18675511}{184806973} a^{14} + \frac{31433071}{184806973} a^{13} - \frac{44362867}{184806973} a^{12} - \frac{45523675}{184806973} a^{11} + \frac{35106634}{184806973} a^{10} + \frac{28795990}{184806973} a^{9} + \frac{43507812}{184806973} a^{8} - \frac{9371057}{184806973} a^{7} + \frac{31125778}{184806973} a^{6} - \frac{54307542}{184806973} a^{5} + \frac{71515657}{184806973} a^{4} + \frac{22450640}{184806973} a^{3} + \frac{86998103}{184806973} a^{2} + \frac{86706103}{184806973} a + \frac{1004489}{184806973}$, $\frac{1}{184806973} a^{22} - \frac{27477}{184806973} a^{20} + \frac{31648}{184806973} a^{19} + \frac{3906}{14215921} a^{18} - \frac{7356750}{184806973} a^{17} + \frac{40972094}{184806973} a^{16} - \frac{41877687}{184806973} a^{15} - \frac{86032801}{184806973} a^{14} + \frac{63509435}{184806973} a^{13} + \frac{47239093}{184806973} a^{12} - \frac{75434023}{184806973} a^{11} + \frac{87678347}{184806973} a^{10} - \frac{74305633}{184806973} a^{9} + \frac{88509977}{184806973} a^{8} + \frac{8927168}{184806973} a^{7} + \frac{20183353}{184806973} a^{6} - \frac{42222595}{184806973} a^{5} - \frac{19460453}{184806973} a^{4} - \frac{1221923}{184806973} a^{3} - \frac{3667721}{14215921} a^{2} + \frac{15021030}{184806973} a + \frac{25166397}{184806973}$, $\frac{1}{184806973} a^{23} + \frac{12301}{184806973} a^{20} + \frac{225864}{184806973} a^{19} - \frac{326564}{184806973} a^{18} + \frac{60847156}{184806973} a^{17} + \frac{78740134}{184806973} a^{16} + \frac{34096128}{184806973} a^{15} - \frac{65004216}{184806973} a^{14} + \frac{91789795}{184806973} a^{13} + \frac{90467158}{184806973} a^{12} - \frac{62490772}{184806973} a^{11} - \frac{91927281}{184806973} a^{10} - \frac{91699176}{184806973} a^{9} + \frac{1223361}{184806973} a^{8} - \frac{53521058}{184806973} a^{7} - \frac{76466613}{184806973} a^{6} - \frac{92286394}{184806973} a^{5} - \frac{44212596}{184806973} a^{4} + \frac{5004964}{184806973} a^{3} + \frac{3851427}{14215921} a^{2} - \frac{64123171}{184806973} a + \frac{68503572}{184806973}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{1800399}{184806973} a^{23} - \frac{2416974}{184806973} a^{22} + \frac{7818171}{184806973} a^{21} - \frac{7596204}{184806973} a^{20} - \frac{9634676}{184806973} a^{19} + \frac{17930001}{184806973} a^{18} - \frac{88860789}{184806973} a^{17} + \frac{59832438}{184806973} a^{16} + \frac{150000366}{184806973} a^{15} - \frac{436806393}{184806973} a^{14} - \frac{180705801}{184806973} a^{13} + \frac{32900442}{184806973} a^{12} - \frac{271588956}{184806973} a^{11} - \frac{201003450}{184806973} a^{10} + \frac{1771395312}{184806973} a^{9} + \frac{671795457}{184806973} a^{8} - \frac{652163709}{184806973} a^{7} + \frac{152072058}{184806973} a^{6} + \frac{55985010}{184806973} a^{5} - \frac{4737629686}{184806973} a^{4} + \frac{25550868}{184806973} a^{3} - \frac{6141087}{184806973} a^{2} - \frac{2416974}{184806973} a + \frac{2195007}{184806973} \) (order $30$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 8057321.833968681 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2\times C_{12}$ (as 24T2):
An abelian group of order 24 |
The 24 conjugacy class representatives for $C_2\times C_{12}$ |
Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
5 | Data not computed | ||||||
$7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |