Properties

Label 24.0.65899669065...7072.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{93}\cdot 13^{16}$
Root discriminant $81.12$
Ramified primes $2, 13$
Class number $17401$ (GRH)
Class group $[17401]$ (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3601057, 14571392, 36958600, 47076680, 42388968, 21877704, 2705996, -5015240, -4034182, -1035552, 538844, 445488, 104650, -71320, -26876, -7840, 8583, 152, 432, -688, 146, -16, 20, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^23 + 20*x^22 - 16*x^21 + 146*x^20 - 688*x^19 + 432*x^18 + 152*x^17 + 8583*x^16 - 7840*x^15 - 26876*x^14 - 71320*x^13 + 104650*x^12 + 445488*x^11 + 538844*x^10 - 1035552*x^9 - 4034182*x^8 - 5015240*x^7 + 2705996*x^6 + 21877704*x^5 + 42388968*x^4 + 47076680*x^3 + 36958600*x^2 + 14571392*x + 3601057)
 
gp: K = bnfinit(x^24 - 8*x^23 + 20*x^22 - 16*x^21 + 146*x^20 - 688*x^19 + 432*x^18 + 152*x^17 + 8583*x^16 - 7840*x^15 - 26876*x^14 - 71320*x^13 + 104650*x^12 + 445488*x^11 + 538844*x^10 - 1035552*x^9 - 4034182*x^8 - 5015240*x^7 + 2705996*x^6 + 21877704*x^5 + 42388968*x^4 + 47076680*x^3 + 36958600*x^2 + 14571392*x + 3601057, 1)
 

Normalized defining polynomial

\( x^{24} - 8 x^{23} + 20 x^{22} - 16 x^{21} + 146 x^{20} - 688 x^{19} + 432 x^{18} + 152 x^{17} + 8583 x^{16} - 7840 x^{15} - 26876 x^{14} - 71320 x^{13} + 104650 x^{12} + 445488 x^{11} + 538844 x^{10} - 1035552 x^{9} - 4034182 x^{8} - 5015240 x^{7} + 2705996 x^{6} + 21877704 x^{5} + 42388968 x^{4} + 47076680 x^{3} + 36958600 x^{2} + 14571392 x + 3601057 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6589966906506961482901542164675154259132547072=2^{93}\cdot 13^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $81.12$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(416=2^{5}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{416}(1,·)$, $\chi_{416}(3,·)$, $\chi_{416}(211,·)$, $\chi_{416}(321,·)$, $\chi_{416}(393,·)$, $\chi_{416}(139,·)$, $\chi_{416}(209,·)$, $\chi_{416}(131,·)$, $\chi_{416}(313,·)$, $\chi_{416}(217,·)$, $\chi_{416}(27,·)$, $\chi_{416}(107,·)$, $\chi_{416}(289,·)$, $\chi_{416}(35,·)$, $\chi_{416}(243,·)$, $\chi_{416}(81,·)$, $\chi_{416}(105,·)$, $\chi_{416}(235,·)$, $\chi_{416}(113,·)$, $\chi_{416}(339,·)$, $\chi_{416}(9,·)$, $\chi_{416}(185,·)$, $\chi_{416}(347,·)$, $\chi_{416}(315,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{47} a^{21} + \frac{11}{47} a^{20} + \frac{3}{47} a^{19} - \frac{4}{47} a^{18} + \frac{17}{47} a^{17} + \frac{13}{47} a^{16} - \frac{2}{47} a^{15} - \frac{8}{47} a^{14} + \frac{8}{47} a^{13} + \frac{1}{47} a^{12} - \frac{18}{47} a^{11} - \frac{2}{47} a^{10} + \frac{13}{47} a^{9} + \frac{23}{47} a^{8} - \frac{15}{47} a^{7} + \frac{23}{47} a^{6} + \frac{14}{47} a^{5} - \frac{10}{47} a^{4} - \frac{21}{47} a^{3} - \frac{11}{47} a^{2} + \frac{5}{47} a - \frac{12}{47}$, $\frac{1}{411206371929577896451293617943579329} a^{22} + \frac{1828461269617577328418751699970869}{411206371929577896451293617943579329} a^{21} + \frac{63736985822855809699700800715559748}{411206371929577896451293617943579329} a^{20} + \frac{1275549054308096888072795000316586}{411206371929577896451293617943579329} a^{19} + \frac{25716033608038004428742586884903317}{411206371929577896451293617943579329} a^{18} + \frac{36994092721845623110037551044381012}{411206371929577896451293617943579329} a^{17} - \frac{3026648889570355384634843180234796}{8749071743182508435133906764757007} a^{16} + \frac{169212796831555462718068439104000334}{411206371929577896451293617943579329} a^{15} + \frac{98975763205654352233912215505005983}{411206371929577896451293617943579329} a^{14} + \frac{121224212521335360682402995540813049}{411206371929577896451293617943579329} a^{13} - \frac{66420774588374206760122928465027555}{411206371929577896451293617943579329} a^{12} + \frac{39797690340327634686624495559829126}{411206371929577896451293617943579329} a^{11} - \frac{135928595399219828315610091360846162}{411206371929577896451293617943579329} a^{10} + \frac{23296113471428816494215995823657656}{411206371929577896451293617943579329} a^{9} - \frac{53894003677991473933467269424189574}{411206371929577896451293617943579329} a^{8} - \frac{15876478343102775418404935853510053}{411206371929577896451293617943579329} a^{7} - \frac{76908546142836649985574109772489399}{411206371929577896451293617943579329} a^{6} + \frac{33176827263103343232560077054646209}{411206371929577896451293617943579329} a^{5} + \frac{117018742419802332861479445626183550}{411206371929577896451293617943579329} a^{4} - \frac{163304756331898584910970309913239662}{411206371929577896451293617943579329} a^{3} - \frac{154873800201607064318242549789836159}{411206371929577896451293617943579329} a^{2} + \frac{129388780477621407290828382770009163}{411206371929577896451293617943579329} a - \frac{1004080841483452985195902403992227}{5205143948475669575332830606880751}$, $\frac{1}{358272739387083985529693628547415476706596403599} a^{23} - \frac{303240391385}{358272739387083985529693628547415476706596403599} a^{22} + \frac{876091670556568662013008778577153454358750816}{358272739387083985529693628547415476706596403599} a^{21} - \frac{75669948102705873603292126860471041076783885170}{358272739387083985529693628547415476706596403599} a^{20} + \frac{19983330629678934773559830549648250644727754415}{358272739387083985529693628547415476706596403599} a^{19} - \frac{28668616913207932495196447086922762786956119508}{358272739387083985529693628547415476706596403599} a^{18} + \frac{24253237681522185653857957009959180460166277560}{358272739387083985529693628547415476706596403599} a^{17} + \frac{126411265692400968483221037965866595128313315916}{358272739387083985529693628547415476706596403599} a^{16} - \frac{60257013853928893969463531516297848466342220}{358272739387083985529693628547415476706596403599} a^{15} + \frac{68556573464175215557126556355670892063366587953}{358272739387083985529693628547415476706596403599} a^{14} + \frac{155279460419644113535520161119614073446109826209}{358272739387083985529693628547415476706596403599} a^{13} - \frac{25500096005769884949853696162791122437010149496}{358272739387083985529693628547415476706596403599} a^{12} + \frac{157044184272686350263690491555181393940364860185}{358272739387083985529693628547415476706596403599} a^{11} + \frac{111843470874229987712497916194208520008516676971}{358272739387083985529693628547415476706596403599} a^{10} + \frac{97953159779914460661346810439493636865546875115}{358272739387083985529693628547415476706596403599} a^{9} - \frac{81604428252903018927841568553460064464233130398}{358272739387083985529693628547415476706596403599} a^{8} + \frac{73577877949234618959989227056662335172022157664}{358272739387083985529693628547415476706596403599} a^{7} - \frac{61677369687431209315832963259239133891589742799}{358272739387083985529693628547415476706596403599} a^{6} - \frac{125713756617397854618604638591531329049795320200}{358272739387083985529693628547415476706596403599} a^{5} - \frac{159298649472161080968317279998971814937569194349}{358272739387083985529693628547415476706596403599} a^{4} - \frac{46869792936225830957073573599717907767735129146}{358272739387083985529693628547415476706596403599} a^{3} + \frac{162945822145877988214017054240051281221266276497}{358272739387083985529693628547415476706596403599} a^{2} - \frac{2283048285681274541351043964504744085836600597}{7622824242278382670844545288242882483119072417} a + \frac{1029099292922582011096332148880467594544268187}{4535097966925113740882197829714119958311346881}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{17401}$, which has order $17401$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 675765244.4059911 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 3.3.169.1, \(\Q(\zeta_{16})^+\), 6.6.14623232.1, 8.0.2147483648.1, 12.12.7007073538075000832.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $24$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ $24$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ $24$ ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ $24$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ $24$ ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ $24$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{24}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{3}$ $24$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
13Data not computed