Normalized defining polynomial
\( x^{24} - 3 x^{22} - 7 x^{20} + 69 x^{18} - 95 x^{16} - 819 x^{14} + 3977 x^{12} - 13104 x^{10} - 24320 x^{8} + 282624 x^{6} - 458752 x^{4} - 3145728 x^{2} + 16777216 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61138259958814499261991852715087890625=5^{12}\cdot 7^{20}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(385=5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{385}(384,·)$, $\chi_{385}(1,·)$, $\chi_{385}(131,·)$, $\chi_{385}(199,·)$, $\chi_{385}(331,·)$, $\chi_{385}(76,·)$, $\chi_{385}(144,·)$, $\chi_{385}(274,·)$, $\chi_{385}(276,·)$, $\chi_{385}(89,·)$, $\chi_{385}(219,·)$, $\chi_{385}(221,·)$, $\chi_{385}(351,·)$, $\chi_{385}(34,·)$, $\chi_{385}(164,·)$, $\chi_{385}(166,·)$, $\chi_{385}(296,·)$, $\chi_{385}(109,·)$, $\chi_{385}(111,·)$, $\chi_{385}(241,·)$, $\chi_{385}(309,·)$, $\chi_{385}(54,·)$, $\chi_{385}(186,·)$, $\chi_{385}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{63632} a^{14} - \frac{3}{16} a^{12} + \frac{1}{16} a^{10} - \frac{3}{16} a^{8} - \frac{7}{16} a^{6} - \frac{1}{2} a^{5} + \frac{5}{16} a^{4} + \frac{1}{16} a^{2} - \frac{819}{3977}$, $\frac{1}{254528} a^{15} + \frac{5}{64} a^{13} + \frac{1}{64} a^{11} + \frac{13}{64} a^{9} + \frac{9}{64} a^{7} + \frac{21}{64} a^{5} - \frac{1}{2} a^{4} - \frac{15}{64} a^{3} - \frac{1199}{3977} a$, $\frac{1}{1018112} a^{16} - \frac{3}{1018112} a^{14} - \frac{15}{256} a^{12} - \frac{35}{256} a^{10} - \frac{39}{256} a^{8} + \frac{37}{256} a^{6} + \frac{1}{256} a^{4} - \frac{819}{63632} a^{2} - \frac{1}{2} a - \frac{95}{3977}$, $\frac{1}{4072448} a^{17} - \frac{3}{4072448} a^{15} - \frac{15}{1024} a^{13} + \frac{221}{1024} a^{11} + \frac{89}{1024} a^{9} - \frac{219}{1024} a^{7} - \frac{1}{2} a^{6} + \frac{257}{1024} a^{5} + \frac{62813}{254528} a^{3} - \frac{1}{2} a^{2} + \frac{1941}{7954} a$, $\frac{1}{32579584} a^{18} - \frac{1}{8144896} a^{17} - \frac{3}{32579584} a^{16} + \frac{3}{8144896} a^{15} - \frac{7}{32579584} a^{14} - \frac{241}{2048} a^{13} - \frac{35}{8192} a^{12} + \frac{35}{2048} a^{11} + \frac{345}{8192} a^{10} - \frac{345}{2048} a^{9} - \frac{475}{8192} a^{8} + \frac{475}{2048} a^{7} + \frac{1}{8192} a^{6} - \frac{1}{2048} a^{5} - \frac{819}{2036224} a^{4} - \frac{253709}{509056} a^{3} - \frac{95}{127264} a^{2} - \frac{15813}{31816} a + \frac{69}{7954}$, $\frac{1}{130318336} a^{19} + \frac{13}{130318336} a^{17} - \frac{55}{130318336} a^{15} + \frac{3821}{32768} a^{13} - \frac{4311}{32768} a^{11} + \frac{949}{32768} a^{9} + \frac{593}{32768} a^{7} - \frac{1016533}{4072448} a^{5} - \frac{64089}{254528} a^{3} - \frac{1}{2} a^{2} - \frac{1995}{7954} a - \frac{1}{2}$, $\frac{1}{521273344} a^{20} - \frac{3}{521273344} a^{18} - \frac{1}{8144896} a^{17} - \frac{7}{521273344} a^{16} + \frac{3}{8144896} a^{15} + \frac{69}{521273344} a^{14} + \frac{15}{2048} a^{13} - \frac{28327}{131072} a^{12} + \frac{291}{2048} a^{11} + \frac{20005}{131072} a^{10} - \frac{89}{2048} a^{9} + \frac{1}{131072} a^{8} - \frac{293}{2048} a^{7} - \frac{819}{32579584} a^{6} - \frac{769}{2048} a^{5} + \frac{1018017}{2036224} a^{4} - \frac{190077}{509056} a^{3} + \frac{69}{127264} a^{2} + \frac{509}{3977} a - \frac{7}{7954}$, $\frac{1}{2085093376} a^{21} - \frac{3}{2085093376} a^{19} + \frac{249}{2085093376} a^{17} - \frac{699}{2085093376} a^{15} - \frac{1}{127264} a^{14} - \frac{32167}{524288} a^{13} - \frac{5}{32} a^{12} - \frac{120027}{524288} a^{11} - \frac{1}{32} a^{10} + \frac{88321}{524288} a^{9} + \frac{3}{32} a^{8} - \frac{30226019}{130318336} a^{7} + \frac{7}{32} a^{6} - \frac{2034283}{4072448} a^{5} + \frac{11}{32} a^{4} + \frac{126889}{254528} a^{3} - \frac{1}{32} a^{2} - \frac{51}{15908} a + \frac{819}{7954}$, $\frac{1}{8340373504} a^{22} - \frac{3}{8340373504} a^{20} - \frac{7}{8340373504} a^{18} - \frac{1}{8144896} a^{17} + \frac{69}{8340373504} a^{16} - \frac{13}{8144896} a^{15} - \frac{95}{8340373504} a^{14} - \frac{65}{2048} a^{13} + \frac{151077}{2097152} a^{12} - \frac{237}{2048} a^{11} + \frac{1}{2097152} a^{10} - \frac{297}{2048} a^{9} - \frac{819}{521273344} a^{8} - \frac{437}{2048} a^{7} + \frac{16289697}{32579584} a^{6} + \frac{943}{2048} a^{5} - \frac{1018043}{2036224} a^{4} + \frac{62053}{254528} a^{3} + \frac{63625}{127264} a^{2} + \frac{2217}{7954} a - \frac{3}{7954}$, $\frac{1}{33361494016} a^{23} - \frac{3}{33361494016} a^{21} - \frac{7}{33361494016} a^{19} - \frac{4027}{33361494016} a^{17} - \frac{1}{2036224} a^{16} + \frac{12193}{33361494016} a^{15} + \frac{3}{2036224} a^{14} + \frac{212517}{8388608} a^{13} + \frac{15}{512} a^{12} - \frac{1953791}{8388608} a^{11} + \frac{35}{512} a^{10} + \frac{170023885}{2085093376} a^{9} - \frac{89}{512} a^{8} - \frac{2354479}{130318336} a^{7} - \frac{37}{512} a^{6} + \frac{508079}{2036224} a^{5} - \frac{1}{512} a^{4} - \frac{31613}{127264} a^{3} - \frac{62813}{127264} a^{2} + \frac{4023}{15908} a + \frac{95}{7954}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{7}{16289792} a^{20} - \frac{182685}{16289792} a^{6} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 268997143.93463415 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | R | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |