Properties

Label 24.0.591...216.1
Degree $24$
Signature $[0, 12]$
Discriminant $5.911\times 10^{39}$
Root discriminant \(45.41\)
Ramified primes $2,7,79$
Class number $264$ (GRH)
Class group [2, 2, 66] (GRH)
Galois group $C_2^2\times D_6$ (as 24T30)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^22 + 67*x^20 - 320*x^18 + 2315*x^16 + 7064*x^14 - 14367*x^12 - 58928*x^10 + 82856*x^8 - 58880*x^6 + 282768*x^4 + 17664*x^2 + 1024)
 
gp: K = bnfinit(y^24 - 8*y^22 + 67*y^20 - 320*y^18 + 2315*y^16 + 7064*y^14 - 14367*y^12 - 58928*y^10 + 82856*y^8 - 58880*y^6 + 282768*y^4 + 17664*y^2 + 1024, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 8*x^22 + 67*x^20 - 320*x^18 + 2315*x^16 + 7064*x^14 - 14367*x^12 - 58928*x^10 + 82856*x^8 - 58880*x^6 + 282768*x^4 + 17664*x^2 + 1024);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 8*x^22 + 67*x^20 - 320*x^18 + 2315*x^16 + 7064*x^14 - 14367*x^12 - 58928*x^10 + 82856*x^8 - 58880*x^6 + 282768*x^4 + 17664*x^2 + 1024)
 

\( x^{24} - 8 x^{22} + 67 x^{20} - 320 x^{18} + 2315 x^{16} + 7064 x^{14} - 14367 x^{12} - 58928 x^{10} + \cdots + 1024 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(5910619501477475486901757182719574409216\) \(\medspace = 2^{48}\cdot 7^{12}\cdot 79^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.41\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}7^{1/2}79^{1/2}\approx 94.06380813043877$
Ramified primes:   \(2\), \(7\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{5}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{6}+\frac{1}{8}a^{4}-\frac{1}{4}a^{2}$, $\frac{1}{8}a^{9}-\frac{3}{8}a^{5}-\frac{1}{2}a$, $\frac{1}{8}a^{10}+\frac{1}{8}a^{6}$, $\frac{1}{8}a^{11}-\frac{1}{8}a^{7}-\frac{1}{2}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{10}-\frac{1}{16}a^{8}-\frac{1}{16}a^{6}-\frac{1}{8}a^{4}$, $\frac{1}{16}a^{13}-\frac{1}{16}a^{11}-\frac{1}{16}a^{9}-\frac{1}{16}a^{7}-\frac{1}{8}a^{5}$, $\frac{1}{128}a^{14}+\frac{3}{64}a^{10}-\frac{1}{16}a^{8}+\frac{1}{128}a^{6}-\frac{5}{16}a^{4}-\frac{1}{32}a^{2}-\frac{1}{4}$, $\frac{1}{256}a^{15}-\frac{5}{128}a^{11}-\frac{1}{32}a^{9}-\frac{15}{256}a^{7}+\frac{11}{32}a^{5}+\frac{31}{64}a^{3}-\frac{1}{8}a$, $\frac{1}{256}a^{16}+\frac{3}{128}a^{12}+\frac{1}{32}a^{10}+\frac{1}{256}a^{8}+\frac{5}{32}a^{6}+\frac{31}{64}a^{4}-\frac{3}{8}a^{2}$, $\frac{1}{256}a^{17}+\frac{3}{128}a^{13}+\frac{1}{32}a^{11}+\frac{1}{256}a^{9}-\frac{3}{32}a^{7}-\frac{1}{64}a^{5}+\frac{3}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{256}a^{18}-\frac{1}{32}a^{12}+\frac{13}{256}a^{10}+\frac{1}{32}a^{8}-\frac{13}{128}a^{6}+\frac{5}{16}a^{4}+\frac{11}{32}a^{2}-\frac{1}{4}$, $\frac{1}{256}a^{19}-\frac{1}{32}a^{13}+\frac{13}{256}a^{11}+\frac{1}{32}a^{9}-\frac{13}{128}a^{7}+\frac{5}{16}a^{5}+\frac{11}{32}a^{3}-\frac{1}{4}a$, $\frac{1}{256}a^{20}-\frac{3}{256}a^{12}+\frac{1}{32}a^{10}-\frac{5}{128}a^{8}+\frac{5}{32}a^{6}+\frac{15}{32}a^{4}-\frac{3}{8}a^{2}$, $\frac{1}{1024}a^{21}-\frac{1}{512}a^{19}-\frac{1}{1024}a^{17}-\frac{1}{512}a^{15}-\frac{25}{1024}a^{13}-\frac{3}{512}a^{11}-\frac{11}{1024}a^{9}+\frac{9}{512}a^{7}+\frac{115}{256}a^{5}-\frac{61}{128}a^{3}-\frac{1}{16}a$, $\frac{1}{16\!\cdots\!52}a^{22}+\frac{42\!\cdots\!47}{84\!\cdots\!76}a^{20}+\frac{22\!\cdots\!35}{16\!\cdots\!52}a^{18}-\frac{32\!\cdots\!79}{84\!\cdots\!76}a^{16}-\frac{62\!\cdots\!73}{16\!\cdots\!52}a^{14}+\frac{13\!\cdots\!13}{84\!\cdots\!76}a^{12}+\frac{34\!\cdots\!77}{16\!\cdots\!52}a^{10}+\frac{16\!\cdots\!13}{36\!\cdots\!12}a^{8}-\frac{33\!\cdots\!81}{42\!\cdots\!88}a^{6}+\frac{10\!\cdots\!73}{21\!\cdots\!44}a^{4}-\frac{52\!\cdots\!27}{26\!\cdots\!68}a^{2}-\frac{28\!\cdots\!52}{82\!\cdots\!49}$, $\frac{1}{33\!\cdots\!04}a^{23}+\frac{42\!\cdots\!47}{16\!\cdots\!52}a^{21}-\frac{43\!\cdots\!57}{33\!\cdots\!04}a^{19}+\frac{29\!\cdots\!17}{16\!\cdots\!52}a^{17}-\frac{62\!\cdots\!73}{33\!\cdots\!04}a^{15}+\frac{65\!\cdots\!21}{16\!\cdots\!52}a^{13}+\frac{10\!\cdots\!89}{33\!\cdots\!04}a^{11}+\frac{29\!\cdots\!81}{73\!\cdots\!24}a^{9}+\frac{10\!\cdots\!55}{84\!\cdots\!76}a^{7}-\frac{44\!\cdots\!47}{42\!\cdots\!88}a^{5}-\frac{12\!\cdots\!27}{26\!\cdots\!68}a^{3}-\frac{33\!\cdots\!59}{65\!\cdots\!92}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{2}\times C_{66}$, which has order $264$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{3105049468239422335}{11626724522800123252736} a^{23} - \frac{12445077880699859953}{5813362261400061626368} a^{21} + \frac{208457443476351879505}{11626724522800123252736} a^{19} - \frac{498554541254020026163}{5813362261400061626368} a^{17} + \frac{7205475387506275557617}{11626724522800123252736} a^{15} + \frac{10906406029845280837537}{5813362261400061626368} a^{13} - \frac{44915483409356816233525}{11626724522800123252736} a^{11} - \frac{3958396803089225559679}{252754880930437462016} a^{9} + \frac{65001002369943334042531}{2906681130700030813184} a^{7} - \frac{23485028518664799519859}{1453340565350015406592} a^{5} + \frac{27683735910655354098479}{363335141337503851648} a^{3} + \frac{157064446818803100197}{45416892667187981456} a \)  (order $8$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{83\!\cdots\!75}{11\!\cdots\!36}a^{23}-\frac{60199823505}{910755767601152}a^{22}-\frac{34\!\cdots\!05}{58\!\cdots\!68}a^{21}+\frac{242020228773}{455377883800576}a^{20}+\frac{57\!\cdots\!21}{11\!\cdots\!36}a^{19}-\frac{4052814999383}{910755767601152}a^{18}-\frac{13\!\cdots\!63}{58\!\cdots\!68}a^{17}+\frac{9717378708231}{455377883800576}a^{16}+\frac{19\!\cdots\!65}{11\!\cdots\!36}a^{15}-\frac{140178514460487}{910755767601152}a^{14}+\frac{27\!\cdots\!73}{58\!\cdots\!68}a^{13}-\frac{209633543396005}{455377883800576}a^{12}-\frac{13\!\cdots\!61}{11\!\cdots\!36}a^{11}+\frac{881355432760307}{910755767601152}a^{10}-\frac{10\!\cdots\!19}{25\!\cdots\!16}a^{9}+\frac{76621153387411}{19799038426112}a^{8}+\frac{19\!\cdots\!39}{29\!\cdots\!84}a^{7}-\frac{12\!\cdots\!07}{227688941900288}a^{6}-\frac{76\!\cdots\!11}{14\!\cdots\!92}a^{5}+\frac{472826319130191}{113844470950144}a^{4}+\frac{77\!\cdots\!55}{36\!\cdots\!48}a^{3}-\frac{275417139667829}{14230558868768}a^{2}-\frac{14\!\cdots\!15}{45\!\cdots\!56}a-\frac{709970649554}{444704964649}$, $\frac{19\!\cdots\!73}{33\!\cdots\!04}a^{23}-\frac{13\!\cdots\!05}{82\!\cdots\!64}a^{22}-\frac{79\!\cdots\!73}{16\!\cdots\!52}a^{21}+\frac{52\!\cdots\!09}{41\!\cdots\!32}a^{20}+\frac{13\!\cdots\!71}{33\!\cdots\!04}a^{19}-\frac{87\!\cdots\!95}{82\!\cdots\!64}a^{18}-\frac{31\!\cdots\!55}{16\!\cdots\!52}a^{17}+\frac{21\!\cdots\!07}{41\!\cdots\!32}a^{16}+\frac{45\!\cdots\!99}{33\!\cdots\!04}a^{15}-\frac{30\!\cdots\!35}{82\!\cdots\!64}a^{14}+\frac{69\!\cdots\!57}{16\!\cdots\!52}a^{13}-\frac{45\!\cdots\!49}{41\!\cdots\!32}a^{12}-\frac{28\!\cdots\!23}{33\!\cdots\!04}a^{11}+\frac{19\!\cdots\!83}{82\!\cdots\!64}a^{10}-\frac{25\!\cdots\!31}{73\!\cdots\!24}a^{9}+\frac{16\!\cdots\!63}{17\!\cdots\!84}a^{8}+\frac{41\!\cdots\!43}{84\!\cdots\!76}a^{7}-\frac{27\!\cdots\!99}{20\!\cdots\!16}a^{6}-\frac{14\!\cdots\!75}{42\!\cdots\!88}a^{5}+\frac{99\!\cdots\!67}{10\!\cdots\!08}a^{4}+\frac{87\!\cdots\!97}{52\!\cdots\!36}a^{3}-\frac{57\!\cdots\!61}{12\!\cdots\!76}a^{2}+\frac{79\!\cdots\!05}{82\!\cdots\!49}a-\frac{35\!\cdots\!67}{40\!\cdots\!93}$, $\frac{57\!\cdots\!45}{16\!\cdots\!52}a^{23}-\frac{13\!\cdots\!05}{82\!\cdots\!64}a^{22}-\frac{12\!\cdots\!23}{42\!\cdots\!88}a^{21}+\frac{52\!\cdots\!09}{41\!\cdots\!32}a^{20}+\frac{43\!\cdots\!95}{16\!\cdots\!52}a^{19}-\frac{87\!\cdots\!95}{82\!\cdots\!64}a^{18}-\frac{55\!\cdots\!11}{42\!\cdots\!88}a^{17}+\frac{21\!\cdots\!07}{41\!\cdots\!32}a^{16}+\frac{15\!\cdots\!35}{16\!\cdots\!52}a^{15}-\frac{30\!\cdots\!35}{82\!\cdots\!64}a^{14}+\frac{67\!\cdots\!11}{42\!\cdots\!88}a^{13}-\frac{45\!\cdots\!49}{41\!\cdots\!32}a^{12}-\frac{12\!\cdots\!95}{16\!\cdots\!52}a^{11}+\frac{19\!\cdots\!83}{82\!\cdots\!64}a^{10}-\frac{27\!\cdots\!23}{18\!\cdots\!56}a^{9}+\frac{16\!\cdots\!63}{17\!\cdots\!84}a^{8}+\frac{10\!\cdots\!03}{21\!\cdots\!44}a^{7}-\frac{27\!\cdots\!99}{20\!\cdots\!16}a^{6}-\frac{53\!\cdots\!93}{10\!\cdots\!72}a^{5}+\frac{99\!\cdots\!67}{10\!\cdots\!08}a^{4}+\frac{12\!\cdots\!53}{10\!\cdots\!72}a^{3}-\frac{57\!\cdots\!61}{12\!\cdots\!76}a^{2}-\frac{12\!\cdots\!83}{13\!\cdots\!84}a-\frac{75\!\cdots\!60}{40\!\cdots\!93}$, $\frac{22\!\cdots\!09}{30\!\cdots\!64}a^{23}+\frac{7084463552871}{22\!\cdots\!48}a^{22}-\frac{89\!\cdots\!19}{15\!\cdots\!32}a^{21}-\frac{11143753317775}{11\!\cdots\!24}a^{20}+\frac{14\!\cdots\!11}{30\!\cdots\!64}a^{19}+\frac{191511310038205}{22\!\cdots\!48}a^{18}-\frac{35\!\cdots\!29}{15\!\cdots\!32}a^{17}+\frac{41397624285959}{11\!\cdots\!24}a^{16}+\frac{51\!\cdots\!27}{30\!\cdots\!64}a^{15}+\frac{50\!\cdots\!69}{22\!\cdots\!48}a^{14}+\frac{76\!\cdots\!63}{15\!\cdots\!32}a^{13}+\frac{65\!\cdots\!07}{11\!\cdots\!24}a^{12}-\frac{32\!\cdots\!51}{30\!\cdots\!64}a^{11}+\frac{12\!\cdots\!31}{22\!\cdots\!48}a^{10}-\frac{27\!\cdots\!77}{66\!\cdots\!84}a^{9}-\frac{22\!\cdots\!97}{48\!\cdots\!88}a^{8}+\frac{47\!\cdots\!45}{76\!\cdots\!16}a^{7}-\frac{35\!\cdots\!63}{55\!\cdots\!12}a^{6}-\frac{17\!\cdots\!05}{38\!\cdots\!08}a^{5}+\frac{42\!\cdots\!83}{27\!\cdots\!56}a^{4}+\frac{19\!\cdots\!79}{95\!\cdots\!52}a^{3}+\frac{33\!\cdots\!99}{34\!\cdots\!32}a^{2}+\frac{45\!\cdots\!69}{11\!\cdots\!44}a+\frac{82\!\cdots\!64}{21\!\cdots\!27}$, $\frac{59\!\cdots\!63}{16\!\cdots\!52}a^{23}-\frac{36\!\cdots\!65}{26\!\cdots\!52}a^{22}-\frac{23\!\cdots\!99}{84\!\cdots\!76}a^{21}+\frac{13\!\cdots\!83}{13\!\cdots\!76}a^{20}+\frac{39\!\cdots\!97}{16\!\cdots\!52}a^{19}-\frac{22\!\cdots\!51}{26\!\cdots\!52}a^{18}-\frac{95\!\cdots\!29}{84\!\cdots\!76}a^{17}+\frac{51\!\cdots\!31}{13\!\cdots\!76}a^{16}+\frac{13\!\cdots\!77}{16\!\cdots\!52}a^{15}-\frac{78\!\cdots\!55}{26\!\cdots\!52}a^{14}+\frac{20\!\cdots\!91}{84\!\cdots\!76}a^{13}-\frac{15\!\cdots\!71}{13\!\cdots\!76}a^{12}-\frac{85\!\cdots\!17}{16\!\cdots\!52}a^{11}+\frac{35\!\cdots\!15}{26\!\cdots\!52}a^{10}-\frac{74\!\cdots\!01}{36\!\cdots\!12}a^{9}+\frac{50\!\cdots\!55}{58\!\cdots\!12}a^{8}+\frac{12\!\cdots\!63}{42\!\cdots\!88}a^{7}-\frac{58\!\cdots\!93}{67\!\cdots\!88}a^{6}-\frac{43\!\cdots\!13}{21\!\cdots\!44}a^{5}+\frac{85\!\cdots\!35}{33\!\cdots\!44}a^{4}+\frac{53\!\cdots\!53}{52\!\cdots\!36}a^{3}-\frac{20\!\cdots\!29}{83\!\cdots\!36}a^{2}-\frac{10\!\cdots\!01}{65\!\cdots\!92}a-\frac{20\!\cdots\!59}{10\!\cdots\!92}$, $\frac{32\!\cdots\!35}{26\!\cdots\!68}a^{23}-\frac{52\!\cdots\!03}{53\!\cdots\!04}a^{22}-\frac{41\!\cdots\!69}{42\!\cdots\!88}a^{21}+\frac{22\!\cdots\!87}{26\!\cdots\!52}a^{20}+\frac{43\!\cdots\!19}{52\!\cdots\!36}a^{19}-\frac{37\!\cdots\!21}{53\!\cdots\!04}a^{18}-\frac{16\!\cdots\!81}{42\!\cdots\!88}a^{17}+\frac{93\!\cdots\!53}{26\!\cdots\!52}a^{16}+\frac{15\!\cdots\!87}{52\!\cdots\!36}a^{15}-\frac{13\!\cdots\!37}{53\!\cdots\!04}a^{14}+\frac{36\!\cdots\!97}{42\!\cdots\!88}a^{13}-\frac{15\!\cdots\!03}{26\!\cdots\!52}a^{12}-\frac{92\!\cdots\!49}{52\!\cdots\!36}a^{11}+\frac{94\!\cdots\!25}{53\!\cdots\!04}a^{10}-\frac{13\!\cdots\!29}{18\!\cdots\!56}a^{9}+\frac{54\!\cdots\!29}{11\!\cdots\!24}a^{8}+\frac{53\!\cdots\!37}{52\!\cdots\!36}a^{7}-\frac{18\!\cdots\!33}{13\!\cdots\!76}a^{6}-\frac{81\!\cdots\!13}{10\!\cdots\!72}a^{5}+\frac{62\!\cdots\!57}{67\!\cdots\!88}a^{4}+\frac{47\!\cdots\!85}{13\!\cdots\!84}a^{3}-\frac{10\!\cdots\!71}{41\!\cdots\!68}a^{2}+\frac{26\!\cdots\!65}{16\!\cdots\!98}a+\frac{54\!\cdots\!61}{10\!\cdots\!92}$, $\frac{29\!\cdots\!97}{13\!\cdots\!76}a^{22}-\frac{11\!\cdots\!29}{67\!\cdots\!88}a^{20}+\frac{20\!\cdots\!49}{13\!\cdots\!76}a^{18}-\frac{23\!\cdots\!97}{33\!\cdots\!44}a^{16}+\frac{69\!\cdots\!11}{13\!\cdots\!76}a^{14}+\frac{10\!\cdots\!75}{67\!\cdots\!88}a^{12}-\frac{43\!\cdots\!93}{13\!\cdots\!76}a^{10}-\frac{11\!\cdots\!35}{91\!\cdots\!08}a^{8}+\frac{63\!\cdots\!59}{33\!\cdots\!44}a^{6}-\frac{57\!\cdots\!03}{41\!\cdots\!68}a^{4}+\frac{26\!\cdots\!85}{41\!\cdots\!68}a^{2}+\frac{10\!\cdots\!59}{52\!\cdots\!46}$, $\frac{49\!\cdots\!07}{21\!\cdots\!44}a^{23}+\frac{57\!\cdots\!63}{16\!\cdots\!52}a^{22}-\frac{16\!\cdots\!03}{84\!\cdots\!76}a^{21}-\frac{22\!\cdots\!87}{84\!\cdots\!76}a^{20}+\frac{68\!\cdots\!51}{42\!\cdots\!88}a^{19}+\frac{36\!\cdots\!61}{16\!\cdots\!52}a^{18}-\frac{67\!\cdots\!29}{84\!\cdots\!76}a^{17}-\frac{84\!\cdots\!53}{84\!\cdots\!76}a^{16}+\frac{24\!\cdots\!85}{42\!\cdots\!88}a^{15}+\frac{12\!\cdots\!81}{16\!\cdots\!52}a^{14}+\frac{12\!\cdots\!91}{84\!\cdots\!76}a^{13}+\frac{23\!\cdots\!79}{84\!\cdots\!76}a^{12}-\frac{14\!\cdots\!91}{42\!\cdots\!88}a^{11}-\frac{71\!\cdots\!17}{16\!\cdots\!52}a^{10}-\frac{46\!\cdots\!97}{36\!\cdots\!12}a^{9}-\frac{85\!\cdots\!97}{36\!\cdots\!12}a^{8}+\frac{78\!\cdots\!17}{42\!\cdots\!88}a^{7}+\frac{87\!\cdots\!97}{42\!\cdots\!88}a^{6}-\frac{54\!\cdots\!53}{21\!\cdots\!44}a^{5}+\frac{18\!\cdots\!23}{21\!\cdots\!44}a^{4}+\frac{10\!\cdots\!51}{10\!\cdots\!72}a^{3}+\frac{64\!\cdots\!33}{65\!\cdots\!92}a^{2}-\frac{22\!\cdots\!53}{13\!\cdots\!84}a+\frac{10\!\cdots\!37}{32\!\cdots\!96}$, $\frac{41\!\cdots\!75}{21\!\cdots\!44}a^{22}-\frac{32\!\cdots\!67}{21\!\cdots\!44}a^{20}+\frac{68\!\cdots\!71}{52\!\cdots\!36}a^{18}-\frac{16\!\cdots\!29}{26\!\cdots\!68}a^{16}+\frac{95\!\cdots\!87}{21\!\cdots\!44}a^{14}+\frac{29\!\cdots\!01}{21\!\cdots\!44}a^{12}-\frac{28\!\cdots\!53}{10\!\cdots\!72}a^{10}-\frac{50\!\cdots\!47}{45\!\cdots\!64}a^{8}+\frac{21\!\cdots\!23}{13\!\cdots\!84}a^{6}-\frac{31\!\cdots\!25}{26\!\cdots\!68}a^{4}+\frac{35\!\cdots\!25}{65\!\cdots\!92}a^{2}+\frac{13\!\cdots\!54}{82\!\cdots\!49}$, $\frac{49\!\cdots\!07}{21\!\cdots\!44}a^{23}-\frac{57\!\cdots\!63}{16\!\cdots\!52}a^{22}-\frac{16\!\cdots\!03}{84\!\cdots\!76}a^{21}+\frac{22\!\cdots\!87}{84\!\cdots\!76}a^{20}+\frac{68\!\cdots\!51}{42\!\cdots\!88}a^{19}-\frac{36\!\cdots\!61}{16\!\cdots\!52}a^{18}-\frac{67\!\cdots\!29}{84\!\cdots\!76}a^{17}+\frac{84\!\cdots\!53}{84\!\cdots\!76}a^{16}+\frac{24\!\cdots\!85}{42\!\cdots\!88}a^{15}-\frac{12\!\cdots\!81}{16\!\cdots\!52}a^{14}+\frac{12\!\cdots\!91}{84\!\cdots\!76}a^{13}-\frac{23\!\cdots\!79}{84\!\cdots\!76}a^{12}-\frac{14\!\cdots\!91}{42\!\cdots\!88}a^{11}+\frac{71\!\cdots\!17}{16\!\cdots\!52}a^{10}-\frac{46\!\cdots\!97}{36\!\cdots\!12}a^{9}+\frac{85\!\cdots\!97}{36\!\cdots\!12}a^{8}+\frac{78\!\cdots\!17}{42\!\cdots\!88}a^{7}-\frac{87\!\cdots\!97}{42\!\cdots\!88}a^{6}-\frac{54\!\cdots\!53}{21\!\cdots\!44}a^{5}-\frac{18\!\cdots\!23}{21\!\cdots\!44}a^{4}+\frac{10\!\cdots\!51}{10\!\cdots\!72}a^{3}-\frac{64\!\cdots\!33}{65\!\cdots\!92}a^{2}-\frac{22\!\cdots\!53}{13\!\cdots\!84}a-\frac{10\!\cdots\!37}{32\!\cdots\!96}$, $\frac{10\!\cdots\!43}{33\!\cdots\!04}a^{23}-\frac{43\!\cdots\!45}{21\!\cdots\!44}a^{22}-\frac{41\!\cdots\!93}{16\!\cdots\!52}a^{21}+\frac{34\!\cdots\!87}{21\!\cdots\!44}a^{20}+\frac{69\!\cdots\!97}{33\!\cdots\!04}a^{19}-\frac{18\!\cdots\!89}{13\!\cdots\!84}a^{18}-\frac{16\!\cdots\!03}{16\!\cdots\!52}a^{17}+\frac{17\!\cdots\!43}{26\!\cdots\!68}a^{16}+\frac{24\!\cdots\!69}{33\!\cdots\!04}a^{15}-\frac{99\!\cdots\!13}{21\!\cdots\!44}a^{14}+\frac{33\!\cdots\!41}{16\!\cdots\!52}a^{13}-\frac{30\!\cdots\!41}{21\!\cdots\!44}a^{12}-\frac{15\!\cdots\!25}{33\!\cdots\!04}a^{11}+\frac{31\!\cdots\!09}{10\!\cdots\!72}a^{10}-\frac{12\!\cdots\!83}{73\!\cdots\!24}a^{9}+\frac{55\!\cdots\!27}{45\!\cdots\!64}a^{8}+\frac{24\!\cdots\!75}{84\!\cdots\!76}a^{7}-\frac{44\!\cdots\!09}{26\!\cdots\!68}a^{6}-\frac{96\!\cdots\!71}{42\!\cdots\!88}a^{5}+\frac{31\!\cdots\!57}{26\!\cdots\!68}a^{4}+\frac{93\!\cdots\!13}{10\!\cdots\!72}a^{3}-\frac{19\!\cdots\!63}{32\!\cdots\!96}a^{2}-\frac{17\!\cdots\!01}{13\!\cdots\!84}a-\frac{39\!\cdots\!32}{82\!\cdots\!49}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 5260470710.85801 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 5260470710.85801 \cdot 264}{8\cdot\sqrt{5910619501477475486901757182719574409216}}\cr\approx \mathstrut & 8.54831398860747 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^22 + 67*x^20 - 320*x^18 + 2315*x^16 + 7064*x^14 - 14367*x^12 - 58928*x^10 + 82856*x^8 - 58880*x^6 + 282768*x^4 + 17664*x^2 + 1024)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 8*x^22 + 67*x^20 - 320*x^18 + 2315*x^16 + 7064*x^14 - 14367*x^12 - 58928*x^10 + 82856*x^8 - 58880*x^6 + 282768*x^4 + 17664*x^2 + 1024, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 8*x^22 + 67*x^20 - 320*x^18 + 2315*x^16 + 7064*x^14 - 14367*x^12 - 58928*x^10 + 82856*x^8 - 58880*x^6 + 282768*x^4 + 17664*x^2 + 1024);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 8*x^22 + 67*x^20 - 320*x^18 + 2315*x^16 + 7064*x^14 - 14367*x^12 - 58928*x^10 + 82856*x^8 - 58880*x^6 + 282768*x^4 + 17664*x^2 + 1024);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times D_6$ (as 24T30):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 48
The 24 conjugacy class representatives for $C_2^2\times D_6$
Character table for $C_2^2\times D_6$ is not computed

Intermediate fields

\(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-7}) \), 3.3.316.1, \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{14})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), 6.6.137002432.1, 6.6.4384077824.1, 6.0.12781568.1, 6.0.399424.1, 6.6.12781568.1, 6.0.4384077824.5, 6.0.34250608.1, 8.0.157351936.1, 12.0.19220138366888574976.2, 12.12.76880553467554299904.1, 12.0.653473922154496.1, 12.0.76880553467554299904.1, 12.0.76880553467554299904.2, 12.0.18769666373914624.1, 12.0.19220138366888574976.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{4}$ ${\href{/padicField/5.6.0.1}{6} }^{4}$ R ${\href{/padicField/11.2.0.1}{2} }^{12}$ ${\href{/padicField/13.6.0.1}{6} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{12}$ ${\href{/padicField/19.2.0.1}{2} }^{12}$ ${\href{/padicField/23.2.0.1}{2} }^{12}$ ${\href{/padicField/29.2.0.1}{2} }^{12}$ ${\href{/padicField/31.2.0.1}{2} }^{12}$ ${\href{/padicField/37.2.0.1}{2} }^{12}$ ${\href{/padicField/41.2.0.1}{2} }^{12}$ ${\href{/padicField/43.2.0.1}{2} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{12}$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.8.2$x^{4} + 2 x^{2} + 4 x + 2$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 2 x^{2} + 4 x + 2$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 2 x^{2} + 4 x + 2$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 2 x^{2} + 4 x + 2$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 2 x^{2} + 4 x + 2$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 2 x^{2} + 4 x + 2$$4$$1$$8$$C_2^2$$[2, 3]$
\(7\) Copy content Toggle raw display 7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(79\) Copy content Toggle raw display 79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$