Normalized defining polynomial
\( x^{24} + 4 x^{22} + 14 x^{20} + 48 x^{18} + 164 x^{16} + 560 x^{14} + 1912 x^{12} + 1120 x^{10} + 656 x^{8} + 384 x^{6} + 224 x^{4} + 128 x^{2} + 64 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5887630061813314259984772021002174464=2^{66}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(112=2^{4}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{112}(1,·)$, $\chi_{112}(97,·)$, $\chi_{112}(5,·)$, $\chi_{112}(65,·)$, $\chi_{112}(9,·)$, $\chi_{112}(13,·)$, $\chi_{112}(109,·)$, $\chi_{112}(17,·)$, $\chi_{112}(85,·)$, $\chi_{112}(89,·)$, $\chi_{112}(25,·)$, $\chi_{112}(101,·)$, $\chi_{112}(29,·)$, $\chi_{112}(69,·)$, $\chi_{112}(33,·)$, $\chi_{112}(37,·)$, $\chi_{112}(81,·)$, $\chi_{112}(41,·)$, $\chi_{112}(45,·)$, $\chi_{112}(93,·)$, $\chi_{112}(53,·)$, $\chi_{112}(73,·)$, $\chi_{112}(57,·)$, $\chi_{112}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{1912} a^{14} - \frac{99}{239}$, $\frac{1}{1912} a^{15} - \frac{99}{239} a$, $\frac{1}{3824} a^{16} + \frac{70}{239} a^{2}$, $\frac{1}{3824} a^{17} + \frac{70}{239} a^{3}$, $\frac{1}{3824} a^{18} - \frac{99}{478} a^{4}$, $\frac{1}{3824} a^{19} - \frac{99}{478} a^{5}$, $\frac{1}{7648} a^{20} + \frac{35}{239} a^{6}$, $\frac{1}{7648} a^{21} + \frac{35}{239} a^{7}$, $\frac{1}{7648} a^{22} - \frac{99}{956} a^{8}$, $\frac{1}{7648} a^{23} - \frac{99}{956} a^{9}$
Class group and class number
$C_{52}$, which has order $52$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{41}{3824} a^{22} - \frac{287}{7648} a^{20} - \frac{123}{956} a^{18} - \frac{1681}{3824} a^{16} - \frac{1435}{956} a^{14} - \frac{41}{8} a^{12} - \frac{35}{2} a^{10} - \frac{1681}{956} a^{8} - \frac{246}{239} a^{6} - \frac{287}{478} a^{4} - \frac{82}{239} a^{2} - \frac{41}{239} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39019312.21180779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.33.375 | $x^{12} - 4 x^{10} + 26 x^{8} + 8 x^{6} - 24 x^{4} + 32 x^{2} + 8$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
| 2.12.33.375 | $x^{12} - 4 x^{10} + 26 x^{8} + 8 x^{6} - 24 x^{4} + 32 x^{2} + 8$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |