Properties

Label 24.0.58668541734...4416.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{24}\cdot 3^{36}\cdot 13^{12}$
Root discriminant $37.47$
Ramified primes $2, 3, 13$
Class number $26$ (GRH)
Class group $[26]$ (GRH)
Galois group $C_2^2\times C_6$ (as 24T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![531441, 0, 0, 0, 0, 0, -112266, 0, 0, 0, 0, 0, 22987, 0, 0, 0, 0, 0, -154, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 154*x^18 + 22987*x^12 - 112266*x^6 + 531441)
 
gp: K = bnfinit(x^24 - 154*x^18 + 22987*x^12 - 112266*x^6 + 531441, 1)
 

Normalized defining polynomial

\( x^{24} - 154 x^{18} + 22987 x^{12} - 112266 x^{6} + 531441 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(58668541734536482566932318836192444416=2^{24}\cdot 3^{36}\cdot 13^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(468=2^{2}\cdot 3^{2}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{468}(1,·)$, $\chi_{468}(259,·)$, $\chi_{468}(389,·)$, $\chi_{468}(391,·)$, $\chi_{468}(77,·)$, $\chi_{468}(79,·)$, $\chi_{468}(209,·)$, $\chi_{468}(131,·)$, $\chi_{468}(235,·)$, $\chi_{468}(25,·)$, $\chi_{468}(155,·)$, $\chi_{468}(157,·)$, $\chi_{468}(287,·)$, $\chi_{468}(443,·)$, $\chi_{468}(337,·)$, $\chi_{468}(233,·)$, $\chi_{468}(103,·)$, $\chi_{468}(365,·)$, $\chi_{468}(467,·)$, $\chi_{468}(53,·)$, $\chi_{468}(311,·)$, $\chi_{468}(313,·)$, $\chi_{468}(415,·)$, $\chi_{468}(181,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{40} a^{12} - \frac{17}{40} a^{6} + \frac{9}{40}$, $\frac{1}{120} a^{13} + \frac{23}{120} a^{7} + \frac{49}{120} a$, $\frac{1}{360} a^{14} + \frac{143}{360} a^{8} - \frac{71}{360} a^{2}$, $\frac{1}{1080} a^{15} + \frac{143}{1080} a^{9} - \frac{71}{1080} a^{3}$, $\frac{1}{3240} a^{16} + \frac{1223}{3240} a^{10} - \frac{1151}{3240} a^{4}$, $\frac{1}{9720} a^{17} + \frac{4463}{9720} a^{11} + \frac{2089}{9720} a^{5}$, $\frac{1}{670300920} a^{18} + \frac{71}{29160} a^{12} + \frac{5833}{29160} a^{6} - \frac{183973}{459740}$, $\frac{1}{2010902760} a^{19} + \frac{71}{87480} a^{13} + \frac{5833}{87480} a^{7} - \frac{214571}{459740} a$, $\frac{1}{6032708280} a^{20} + \frac{71}{262440} a^{14} + \frac{93313}{262440} a^{8} - \frac{214571}{1379220} a^{2}$, $\frac{1}{18098124840} a^{21} + \frac{71}{787320} a^{15} + \frac{93313}{787320} a^{9} - \frac{214571}{4137660} a^{3}$, $\frac{1}{54294374520} a^{22} + \frac{71}{2361960} a^{16} + \frac{93313}{2361960} a^{10} + \frac{3923089}{12412980} a^{4}$, $\frac{1}{162883123560} a^{23} + \frac{71}{7085880} a^{17} - \frac{2268647}{7085880} a^{11} + \frac{3923089}{37238940} a^{5}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{26}$, which has order $26$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1}{2758440} a^{19} + \frac{2117473}{2758440} a \) (order $36$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 428556644.7668969 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_6$ (as 24T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2^2\times C_6$
Character table for $C_2^2\times C_6$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{39}) \), \(\Q(\sqrt{-39}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{13})\), \(\Q(i, \sqrt{39})\), \(\Q(\sqrt{3}, \sqrt{13})\), \(\Q(\sqrt{3}, \sqrt{-13})\), \(\Q(\sqrt{-3}, \sqrt{13})\), \(\Q(\sqrt{-3}, \sqrt{-13})\), 6.0.419904.1, \(\Q(\zeta_{36})^+\), \(\Q(\zeta_{9})\), 6.6.14414517.1, 6.0.922529088.2, 6.6.2767587264.1, 6.0.43243551.1, 8.0.592240896.1, \(\Q(\zeta_{36})\), 12.0.851059918206111744.1, 12.0.7659539263855005696.3, 12.12.7659539263855005696.1, 12.0.7659539263855005696.2, 12.0.1870004703089601.1, 12.0.7659539263855005696.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
2.12.12.26$x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$$2$$6$$12$$C_6\times C_2$$[2]^{6}$
$3$3.12.18.82$x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$$6$$2$$18$$C_6\times C_2$$[2]_{2}^{2}$
3.12.18.82$x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$$6$$2$$18$$C_6\times C_2$$[2]_{2}^{2}$
$13$13.6.3.1$x^{6} - 52 x^{4} + 676 x^{2} - 79092$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
13.6.3.1$x^{6} - 52 x^{4} + 676 x^{2} - 79092$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
13.6.3.1$x^{6} - 52 x^{4} + 676 x^{2} - 79092$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
13.6.3.1$x^{6} - 52 x^{4} + 676 x^{2} - 79092$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$