Properties

Label 24.0.55130019898...1217.1
Degree $24$
Signature $[0, 12]$
Discriminant $7^{20}\cdot 17^{21}$
Root discriminant $60.38$
Ramified primes $7, 17$
Class number $4050$ (GRH)
Class group $[45, 90]$ (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![149227, -70083, 359338, -328603, 681404, -247054, 582221, 188822, 226913, 241364, 63829, 72619, 29288, 3107, 8445, -921, -139, 80, -536, -88, -11, -19, 14, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - x^23 + 14*x^22 - 19*x^21 - 11*x^20 - 88*x^19 - 536*x^18 + 80*x^17 - 139*x^16 - 921*x^15 + 8445*x^14 + 3107*x^13 + 29288*x^12 + 72619*x^11 + 63829*x^10 + 241364*x^9 + 226913*x^8 + 188822*x^7 + 582221*x^6 - 247054*x^5 + 681404*x^4 - 328603*x^3 + 359338*x^2 - 70083*x + 149227)
 
gp: K = bnfinit(x^24 - x^23 + 14*x^22 - 19*x^21 - 11*x^20 - 88*x^19 - 536*x^18 + 80*x^17 - 139*x^16 - 921*x^15 + 8445*x^14 + 3107*x^13 + 29288*x^12 + 72619*x^11 + 63829*x^10 + 241364*x^9 + 226913*x^8 + 188822*x^7 + 582221*x^6 - 247054*x^5 + 681404*x^4 - 328603*x^3 + 359338*x^2 - 70083*x + 149227, 1)
 

Normalized defining polynomial

\( x^{24} - x^{23} + 14 x^{22} - 19 x^{21} - 11 x^{20} - 88 x^{19} - 536 x^{18} + 80 x^{17} - 139 x^{16} - 921 x^{15} + 8445 x^{14} + 3107 x^{13} + 29288 x^{12} + 72619 x^{11} + 63829 x^{10} + 241364 x^{9} + 226913 x^{8} + 188822 x^{7} + 582221 x^{6} - 247054 x^{5} + 681404 x^{4} - 328603 x^{3} + 359338 x^{2} - 70083 x + 149227 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5513001989803802379160200522041204586631217=7^{20}\cdot 17^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.38$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(119=7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{119}(64,·)$, $\chi_{119}(1,·)$, $\chi_{119}(66,·)$, $\chi_{119}(67,·)$, $\chi_{119}(4,·)$, $\chi_{119}(72,·)$, $\chi_{119}(76,·)$, $\chi_{119}(16,·)$, $\chi_{119}(81,·)$, $\chi_{119}(18,·)$, $\chi_{119}(19,·)$, $\chi_{119}(86,·)$, $\chi_{119}(87,·)$, $\chi_{119}(26,·)$, $\chi_{119}(30,·)$, $\chi_{119}(104,·)$, $\chi_{119}(106,·)$, $\chi_{119}(110,·)$, $\chi_{119}(111,·)$, $\chi_{119}(50,·)$, $\chi_{119}(83,·)$, $\chi_{119}(94,·)$, $\chi_{119}(59,·)$, $\chi_{119}(117,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{13} a^{13} - \frac{1}{13} a$, $\frac{1}{13} a^{14} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{15} - \frac{1}{13} a^{3}$, $\frac{1}{13} a^{16} - \frac{1}{13} a^{4}$, $\frac{1}{13} a^{17} - \frac{1}{13} a^{5}$, $\frac{1}{13} a^{18} - \frac{1}{13} a^{6}$, $\frac{1}{13} a^{19} - \frac{1}{13} a^{7}$, $\frac{1}{13} a^{20} - \frac{1}{13} a^{8}$, $\frac{1}{42419} a^{21} + \frac{449}{42419} a^{20} + \frac{157}{42419} a^{19} - \frac{203}{42419} a^{18} + \frac{1321}{42419} a^{17} + \frac{61}{3263} a^{16} - \frac{101}{42419} a^{15} - \frac{1325}{42419} a^{14} - \frac{113}{3263} a^{13} + \frac{1486}{3263} a^{12} + \frac{39}{251} a^{11} - \frac{1212}{3263} a^{10} + \frac{3717}{42419} a^{9} - \frac{14879}{42419} a^{8} + \frac{6525}{42419} a^{7} - \frac{7922}{42419} a^{6} + \frac{13200}{42419} a^{5} + \frac{1553}{3263} a^{4} + \frac{16845}{42419} a^{3} - \frac{17902}{42419} a^{2} - \frac{544}{3263} a + \frac{11}{251}$, $\frac{1}{1312995307} a^{22} - \frac{248}{100999639} a^{21} - \frac{13523077}{1312995307} a^{20} + \frac{38677026}{1312995307} a^{19} - \frac{25924822}{1312995307} a^{18} - \frac{50242833}{1312995307} a^{17} - \frac{6051796}{1312995307} a^{16} + \frac{35936348}{1312995307} a^{15} + \frac{5547223}{1312995307} a^{14} - \frac{1358788}{100999639} a^{13} + \frac{5460427}{100999639} a^{12} + \frac{5112871}{100999639} a^{11} + \frac{474133152}{1312995307} a^{10} - \frac{1465741}{100999639} a^{9} - \frac{225778180}{1312995307} a^{8} - \frac{63185718}{1312995307} a^{7} - \frac{298628277}{1312995307} a^{6} - \frac{24875184}{1312995307} a^{5} + \frac{379449015}{1312995307} a^{4} - \frac{653654215}{1312995307} a^{3} + \frac{14077369}{1312995307} a^{2} - \frac{31316724}{100999639} a + \frac{2518291}{7769203}$, $\frac{1}{2819021739358092823521975350544739364944470472619033} a^{23} + \frac{960875739758227650990661785269134222471214}{2819021739358092823521975350544739364944470472619033} a^{22} - \frac{19921339646139828832069000411700915137200501376}{2819021739358092823521975350544739364944470472619033} a^{21} + \frac{50169703350951425994849227539444280344637278460650}{2819021739358092823521975350544739364944470472619033} a^{20} + \frac{1471918564951017924850088029380700050089322307848}{216847826104468678732459642349595335764959267124541} a^{19} - \frac{60101644184862834416627304860310000890956382056176}{2819021739358092823521975350544739364944470472619033} a^{18} + \frac{74548432544193314542296801571303170165591785732112}{2819021739358092823521975350544739364944470472619033} a^{17} - \frac{52298887428502624794220558152128210107827496297717}{2819021739358092823521975350544739364944470472619033} a^{16} - \frac{77128628735133718875873490518543723270754341042104}{2819021739358092823521975350544739364944470472619033} a^{15} - \frac{40276631884629446720129032068307724176075669801358}{2819021739358092823521975350544739364944470472619033} a^{14} - \frac{3949567317779525785951049656839272352695929198222}{216847826104468678732459642349595335764959267124541} a^{13} + \frac{48127244727613732675592613944234658087601841093623}{216847826104468678732459642349595335764959267124541} a^{12} - \frac{626755586082942046542295784675874185405109138169150}{2819021739358092823521975350544739364944470472619033} a^{11} - \frac{107268836341164198141109544765540539180750381546902}{2819021739358092823521975350544739364944470472619033} a^{10} + \frac{142123692253507888947758690961024517057270375830447}{2819021739358092823521975350544739364944470472619033} a^{9} + \frac{179267313153201713437955841483555025089467961181231}{2819021739358092823521975350544739364944470472619033} a^{8} + \frac{8808285786106915108121387376708595876082407401061}{216847826104468678732459642349595335764959267124541} a^{7} - \frac{70921664562653516635961863619198828613985652975384}{2819021739358092823521975350544739364944470472619033} a^{6} + \frac{684305301282980020663014320262508916640476164665508}{2819021739358092823521975350544739364944470472619033} a^{5} + \frac{1364661260151643669160948244483855482381834606104107}{2819021739358092823521975350544739364944470472619033} a^{4} + \frac{191314580854276635696967777310511882172047355231536}{2819021739358092823521975350544739364944470472619033} a^{3} + \frac{509040857127354072998343209830656967914244558779534}{2819021739358092823521975350544739364944470472619033} a^{2} - \frac{2275809160907904740788179199162093605168374977366}{216847826104468678732459642349595335764959267124541} a - \frac{7944250836078000336821242492381224894970771776581}{16680602008036052210189203257661179674227635932657}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{45}\times C_{90}$, which has order $4050$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 250243842.68845215 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.4913.1, 6.6.11796113.1, 8.0.985223153873.1, 12.12.683635509017782097.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ $24$ $24$ R $24$ ${\href{/LocalNumberField/13.1.0.1}{1} }^{24}$ R ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ $24$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ $24$ $24$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
17Data not computed