Normalized defining polynomial
\( x^{24} + 5 x^{22} + 20 x^{20} + 75 x^{18} + 275 x^{16} + 1000 x^{14} + 3625 x^{12} + 5000 x^{10} + 6875 x^{8} + 9375 x^{6} + 12500 x^{4} + 15625 x^{2} + 15625 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5106705043047168064000000000000000000=2^{24}\cdot 5^{18}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(140=2^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{140}(1,·)$, $\chi_{140}(3,·)$, $\chi_{140}(69,·)$, $\chi_{140}(129,·)$, $\chi_{140}(9,·)$, $\chi_{140}(87,·)$, $\chi_{140}(81,·)$, $\chi_{140}(67,·)$, $\chi_{140}(23,·)$, $\chi_{140}(89,·)$, $\chi_{140}(27,·)$, $\chi_{140}(29,·)$, $\chi_{140}(107,·)$, $\chi_{140}(101,·)$, $\chi_{140}(103,·)$, $\chi_{140}(41,·)$, $\chi_{140}(43,·)$, $\chi_{140}(109,·)$, $\chi_{140}(47,·)$, $\chi_{140}(83,·)$, $\chi_{140}(121,·)$, $\chi_{140}(123,·)$, $\chi_{140}(61,·)$, $\chi_{140}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{3625} a^{14} + \frac{11}{29}$, $\frac{1}{3625} a^{15} + \frac{11}{29} a$, $\frac{1}{18125} a^{16} + \frac{8}{29} a^{2}$, $\frac{1}{18125} a^{17} + \frac{8}{29} a^{3}$, $\frac{1}{18125} a^{18} + \frac{11}{145} a^{4}$, $\frac{1}{18125} a^{19} + \frac{11}{145} a^{5}$, $\frac{1}{90625} a^{20} + \frac{8}{145} a^{6}$, $\frac{1}{90625} a^{21} + \frac{8}{145} a^{7}$, $\frac{1}{90625} a^{22} + \frac{11}{725} a^{8}$, $\frac{1}{90625} a^{23} + \frac{11}{725} a^{9}$
Class group and class number
$C_{26}$, which has order $26$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11}{90625} a^{22} - \frac{44}{90625} a^{20} - \frac{33}{18125} a^{18} - \frac{121}{18125} a^{16} - \frac{88}{3625} a^{14} - \frac{11}{125} a^{12} - \frac{8}{25} a^{10} - \frac{121}{725} a^{8} - \frac{33}{145} a^{6} - \frac{44}{145} a^{4} - \frac{11}{29} a^{2} - \frac{11}{29} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36584901.886295445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||