Normalized defining polynomial
\( x^{24} + 7 x^{22} + 35 x^{20} + 154 x^{18} + 637 x^{16} + 1666 x^{14} + 3822 x^{12} + 7889 x^{10} + 13377 x^{8} + 9947 x^{6} + 7203 x^{4} + 4802 x^{2} + 2401 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5106705043047168064000000000000000000=2^{24}\cdot 5^{18}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(140=2^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{140}(19,·)$, $\chi_{140}(1,·)$, $\chi_{140}(3,·)$, $\chi_{140}(9,·)$, $\chi_{140}(139,·)$, $\chi_{140}(81,·)$, $\chi_{140}(131,·)$, $\chi_{140}(121,·)$, $\chi_{140}(87,·)$, $\chi_{140}(27,·)$, $\chi_{140}(29,·)$, $\chi_{140}(31,·)$, $\chi_{140}(37,·)$, $\chi_{140}(103,·)$, $\chi_{140}(109,·)$, $\chi_{140}(93,·)$, $\chi_{140}(47,·)$, $\chi_{140}(113,·)$, $\chi_{140}(83,·)$, $\chi_{140}(53,·)$, $\chi_{140}(137,·)$, $\chi_{140}(111,·)$, $\chi_{140}(57,·)$, $\chi_{140}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{7} a^{9}$, $\frac{1}{7} a^{10}$, $\frac{1}{7} a^{11}$, $\frac{1}{49} a^{12}$, $\frac{1}{49} a^{13}$, $\frac{1}{49} a^{14}$, $\frac{1}{49} a^{15}$, $\frac{1}{49} a^{16}$, $\frac{1}{49} a^{17}$, $\frac{1}{998473} a^{18} - \frac{661}{142639} a^{16} - \frac{1014}{142639} a^{14} - \frac{754}{142639} a^{12} + \frac{613}{20377} a^{10} + \frac{928}{20377} a^{8} - \frac{131}{20377} a^{6} - \frac{739}{2911} a^{4} - \frac{1072}{2911} a^{2} - \frac{200}{2911}$, $\frac{1}{998473} a^{19} - \frac{661}{142639} a^{17} - \frac{1014}{142639} a^{15} - \frac{754}{142639} a^{13} + \frac{613}{20377} a^{11} + \frac{928}{20377} a^{9} - \frac{131}{20377} a^{7} - \frac{739}{2911} a^{5} - \frac{1072}{2911} a^{3} - \frac{200}{2911} a$, $\frac{1}{998473} a^{20} - \frac{946}{20377} a^{10} + \frac{298}{2911}$, $\frac{1}{998473} a^{21} - \frac{946}{20377} a^{11} + \frac{298}{2911} a$, $\frac{1}{998473} a^{22} - \frac{800}{142639} a^{12} + \frac{298}{2911} a^{2}$, $\frac{1}{998473} a^{23} - \frac{800}{142639} a^{13} + \frac{298}{2911} a^{3}$
Class group and class number
$C_{26}$, which has order $26$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{311}{998473} a^{22} + \frac{311}{142639} a^{20} + \frac{10907}{998473} a^{18} + \frac{6842}{142639} a^{16} + \frac{4043}{20377} a^{14} + \frac{10574}{20377} a^{12} + \frac{24258}{20377} a^{10} + \frac{49636}{20377} a^{8} + \frac{12129}{2911} a^{6} + \frac{9019}{2911} a^{4} + \frac{6531}{2911} a^{2} + \frac{4354}{2911} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24838443.50460296 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||