Normalized defining polynomial
\( x^{24} + 26 x^{18} - 53 x^{12} + 18954 x^{6} + 531441 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(507202869744901554493542558837890625=3^{36}\cdot 5^{12}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(64,·)$, $\chi_{315}(1,·)$, $\chi_{315}(134,·)$, $\chi_{315}(71,·)$, $\chi_{315}(139,·)$, $\chi_{315}(76,·)$, $\chi_{315}(209,·)$, $\chi_{315}(146,·)$, $\chi_{315}(211,·)$, $\chi_{315}(281,·)$, $\chi_{315}(29,·)$, $\chi_{315}(286,·)$, $\chi_{315}(34,·)$, $\chi_{315}(104,·)$, $\chi_{315}(41,·)$, $\chi_{315}(106,·)$, $\chi_{315}(274,·)$, $\chi_{315}(239,·)$, $\chi_{315}(176,·)$, $\chi_{315}(244,·)$, $\chi_{315}(181,·)$, $\chi_{315}(169,·)$, $\chi_{315}(314,·)$, $\chi_{315}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{6} + \frac{1}{8}$, $\frac{1}{24} a^{13} + \frac{5}{24} a^{7} - \frac{1}{2} a^{4} - \frac{11}{24} a$, $\frac{1}{72} a^{14} + \frac{17}{72} a^{8} + \frac{1}{72} a^{2}$, $\frac{1}{216} a^{15} + \frac{53}{216} a^{9} + \frac{1}{216} a^{3} - \frac{1}{2}$, $\frac{1}{648} a^{16} - \frac{55}{648} a^{10} - \frac{215}{648} a^{4}$, $\frac{1}{1944} a^{17} + \frac{269}{1944} a^{11} + \frac{433}{1944} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{618192} a^{18} - \frac{1}{432} a^{15} + \frac{7}{2916} a^{12} + \frac{55}{432} a^{9} - \frac{547}{2916} a^{6} + \frac{215}{432} a^{3} + \frac{291}{848}$, $\frac{1}{1854576} a^{19} - \frac{1}{1296} a^{16} + \frac{7}{8748} a^{13} + \frac{55}{1296} a^{10} + \frac{911}{8748} a^{7} - \frac{433}{1296} a^{4} + \frac{715}{2544} a$, $\frac{1}{5563728} a^{20} - \frac{1}{3888} a^{17} + \frac{7}{26244} a^{14} + \frac{703}{3888} a^{11} + \frac{5285}{26244} a^{8} + \frac{1511}{3888} a^{5} + \frac{3259}{7632} a^{2}$, $\frac{1}{16691184} a^{21} - \frac{701}{314928} a^{15} - \frac{1}{16} a^{12} + \frac{61235}{314928} a^{9} - \frac{1}{16} a^{6} + \frac{3511}{11448} a^{3} - \frac{1}{16}$, $\frac{1}{50073552} a^{22} - \frac{701}{944784} a^{16} - \frac{1}{48} a^{13} - \frac{96229}{944784} a^{10} + \frac{7}{48} a^{7} - \frac{13661}{34344} a^{4} - \frac{1}{48} a$, $\frac{1}{150220656} a^{23} - \frac{701}{2834352} a^{17} - \frac{1}{144} a^{14} + \frac{376163}{2834352} a^{11} - \frac{17}{144} a^{8} - \frac{30833}{103032} a^{5} - \frac{1}{144} a^{2}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{34344} a^{22} - \frac{16039}{34344} a^{4} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70281481.48527941 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |