Properties

Label 24.0.457...000.1
Degree $24$
Signature $[0, 12]$
Discriminant $4.571\times 10^{46}$
Root discriminant \(87.94\)
Ramified primes $2,3,5,7,79$
Class number $133144$ (GRH)
Class group [2, 66572] (GRH)
Galois group $C_2^2\times D_6$ (as 24T30)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^23 + 102*x^22 - 612*x^21 + 4179*x^20 - 19236*x^19 + 89532*x^18 - 321504*x^17 + 1103631*x^16 - 3152176*x^15 + 8359414*x^14 - 19416180*x^13 + 40793493*x^12 - 76852756*x^11 + 129341224*x^10 - 193089256*x^9 + 258275000*x^8 - 296026256*x^7 + 300495808*x^6 - 266701408*x^5 + 208845136*x^4 - 178117888*x^3 + 171891200*x^2 - 95447040*x + 58491904)
 
gp: K = bnfinit(y^24 - 8*y^23 + 102*y^22 - 612*y^21 + 4179*y^20 - 19236*y^19 + 89532*y^18 - 321504*y^17 + 1103631*y^16 - 3152176*y^15 + 8359414*y^14 - 19416180*y^13 + 40793493*y^12 - 76852756*y^11 + 129341224*y^10 - 193089256*y^9 + 258275000*y^8 - 296026256*y^7 + 300495808*y^6 - 266701408*y^5 + 208845136*y^4 - 178117888*y^3 + 171891200*y^2 - 95447040*y + 58491904, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 8*x^23 + 102*x^22 - 612*x^21 + 4179*x^20 - 19236*x^19 + 89532*x^18 - 321504*x^17 + 1103631*x^16 - 3152176*x^15 + 8359414*x^14 - 19416180*x^13 + 40793493*x^12 - 76852756*x^11 + 129341224*x^10 - 193089256*x^9 + 258275000*x^8 - 296026256*x^7 + 300495808*x^6 - 266701408*x^5 + 208845136*x^4 - 178117888*x^3 + 171891200*x^2 - 95447040*x + 58491904);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 8*x^23 + 102*x^22 - 612*x^21 + 4179*x^20 - 19236*x^19 + 89532*x^18 - 321504*x^17 + 1103631*x^16 - 3152176*x^15 + 8359414*x^14 - 19416180*x^13 + 40793493*x^12 - 76852756*x^11 + 129341224*x^10 - 193089256*x^9 + 258275000*x^8 - 296026256*x^7 + 300495808*x^6 - 266701408*x^5 + 208845136*x^4 - 178117888*x^3 + 171891200*x^2 - 95447040*x + 58491904)
 

\( x^{24} - 8 x^{23} + 102 x^{22} - 612 x^{21} + 4179 x^{20} - 19236 x^{19} + 89532 x^{18} + \cdots + 58491904 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(45709683595991970654497806956957696000000000000\) \(\medspace = 2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{12}\cdot 79^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(87.94\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{1/2}5^{1/2}7^{1/2}79^{1/2}\approx 182.1537811850196$
Ramified primes:   \(2\), \(3\), \(5\), \(7\), \(79\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{7}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{8}a^{9}-\frac{1}{8}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{16}a^{10}-\frac{1}{16}a^{9}-\frac{1}{8}a^{7}-\frac{1}{16}a^{6}+\frac{1}{16}a^{5}-\frac{3}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{16}a^{11}-\frac{1}{16}a^{9}+\frac{1}{16}a^{7}-\frac{3}{16}a^{5}-\frac{1}{4}a^{4}-\frac{3}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{16}a^{12}-\frac{1}{16}a^{9}-\frac{1}{16}a^{8}-\frac{1}{8}a^{7}-\frac{3}{16}a^{5}-\frac{1}{4}a^{4}-\frac{1}{8}a^{3}-\frac{1}{4}a^{2}$, $\frac{1}{32}a^{13}-\frac{1}{32}a^{12}-\frac{1}{32}a^{11}-\frac{1}{32}a^{10}+\frac{1}{32}a^{9}+\frac{1}{32}a^{8}+\frac{1}{32}a^{7}-\frac{3}{32}a^{6}-\frac{1}{16}a^{5}-\frac{1}{2}a^{3}+\frac{1}{8}a^{2}-\frac{1}{2}a$, $\frac{1}{64}a^{14}-\frac{1}{32}a^{10}-\frac{1}{16}a^{9}-\frac{3}{64}a^{6}-\frac{3}{16}a^{5}-\frac{1}{2}a^{3}-\frac{7}{16}a^{2}-\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{128}a^{15}+\frac{1}{64}a^{11}+\frac{9}{128}a^{7}-\frac{1}{4}a^{4}+\frac{5}{32}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a$, $\frac{1}{128}a^{16}+\frac{1}{64}a^{12}-\frac{7}{128}a^{8}+\frac{1}{32}a^{4}$, $\frac{1}{128}a^{17}-\frac{1}{64}a^{13}-\frac{1}{32}a^{12}-\frac{1}{32}a^{11}-\frac{1}{32}a^{10}-\frac{3}{128}a^{9}+\frac{1}{32}a^{8}-\frac{3}{32}a^{7}-\frac{3}{32}a^{6}-\frac{7}{32}a^{5}-\frac{1}{4}a^{4}+\frac{3}{8}a^{3}-\frac{1}{8}a^{2}-\frac{1}{2}a$, $\frac{1}{256}a^{18}-\frac{1}{256}a^{17}-\frac{1}{128}a^{14}-\frac{1}{128}a^{13}-\frac{1}{32}a^{12}-\frac{7}{256}a^{10}+\frac{7}{256}a^{9}+\frac{1}{32}a^{8}-\frac{1}{8}a^{7}-\frac{1}{32}a^{6}+\frac{15}{64}a^{5}-\frac{3}{8}a^{3}-\frac{7}{16}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{512}a^{19}+\frac{1}{512}a^{17}-\frac{1}{256}a^{16}+\frac{1}{256}a^{13}+\frac{3}{128}a^{12}+\frac{5}{512}a^{11}-\frac{1}{32}a^{10}+\frac{9}{512}a^{9}-\frac{1}{256}a^{8}+\frac{1}{256}a^{7}-\frac{3}{32}a^{6}-\frac{19}{128}a^{5}+\frac{15}{64}a^{4}-\frac{1}{64}a^{3}-\frac{1}{8}a^{2}+\frac{1}{8}a-\frac{1}{2}$, $\frac{1}{2048}a^{20}-\frac{1}{1024}a^{19}-\frac{1}{2048}a^{18}-\frac{3}{1024}a^{17}+\frac{1}{512}a^{16}+\frac{1}{512}a^{15}+\frac{7}{1024}a^{14}-\frac{3}{512}a^{13}+\frac{13}{2048}a^{12}-\frac{17}{1024}a^{11}+\frac{55}{2048}a^{10}+\frac{21}{1024}a^{9}+\frac{19}{1024}a^{8}-\frac{1}{16}a^{7}+\frac{15}{512}a^{6}-\frac{3}{256}a^{5}-\frac{23}{256}a^{4}-\frac{19}{64}a^{3}-\frac{3}{8}a^{2}-\frac{3}{8}a-\frac{1}{4}$, $\frac{1}{2048}a^{21}-\frac{1}{2048}a^{19}+\frac{1}{512}a^{17}+\frac{1}{512}a^{16}+\frac{3}{1024}a^{15}+\frac{13}{2048}a^{13}-\frac{3}{256}a^{12}-\frac{25}{2048}a^{11}+\frac{1}{64}a^{10}+\frac{51}{1024}a^{9}+\frac{1}{512}a^{8}-\frac{19}{512}a^{7}-\frac{5}{64}a^{6}+\frac{1}{256}a^{5}+\frac{1}{128}a^{4}-\frac{17}{64}a^{3}-\frac{7}{16}a^{2}-\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{31\!\cdots\!96}a^{22}-\frac{11\!\cdots\!75}{15\!\cdots\!48}a^{21}-\frac{15\!\cdots\!13}{15\!\cdots\!48}a^{20}+\frac{45\!\cdots\!13}{19\!\cdots\!56}a^{19}+\frac{23\!\cdots\!65}{31\!\cdots\!96}a^{18}-\frac{48\!\cdots\!03}{15\!\cdots\!48}a^{17}+\frac{20\!\cdots\!53}{15\!\cdots\!48}a^{16}-\frac{69\!\cdots\!17}{39\!\cdots\!12}a^{15}+\frac{13\!\cdots\!19}{31\!\cdots\!96}a^{14}+\frac{12\!\cdots\!07}{15\!\cdots\!48}a^{13}+\frac{39\!\cdots\!17}{15\!\cdots\!48}a^{12}-\frac{25\!\cdots\!39}{24\!\cdots\!32}a^{11}+\frac{71\!\cdots\!59}{31\!\cdots\!96}a^{10}-\frac{73\!\cdots\!45}{15\!\cdots\!48}a^{9}-\frac{52\!\cdots\!17}{15\!\cdots\!48}a^{8}+\frac{34\!\cdots\!55}{39\!\cdots\!12}a^{7}+\frac{92\!\cdots\!91}{78\!\cdots\!24}a^{6}-\frac{93\!\cdots\!73}{39\!\cdots\!12}a^{5}+\frac{10\!\cdots\!39}{39\!\cdots\!12}a^{4}+\frac{25\!\cdots\!35}{57\!\cdots\!84}a^{3}-\frac{17\!\cdots\!97}{60\!\cdots\!08}a^{2}+\frac{38\!\cdots\!43}{12\!\cdots\!16}a+\frac{11\!\cdots\!43}{25\!\cdots\!72}$, $\frac{1}{44\!\cdots\!88}a^{23}+\frac{59\!\cdots\!93}{44\!\cdots\!88}a^{22}+\frac{47\!\cdots\!91}{22\!\cdots\!44}a^{21}-\frac{18\!\cdots\!77}{11\!\cdots\!72}a^{20}-\frac{99\!\cdots\!85}{44\!\cdots\!88}a^{19}+\frac{14\!\cdots\!71}{44\!\cdots\!88}a^{18}-\frac{18\!\cdots\!67}{11\!\cdots\!72}a^{17}+\frac{17\!\cdots\!07}{22\!\cdots\!44}a^{16}-\frac{10\!\cdots\!57}{44\!\cdots\!88}a^{15}+\frac{16\!\cdots\!31}{44\!\cdots\!88}a^{14}-\frac{17\!\cdots\!89}{22\!\cdots\!44}a^{13}-\frac{16\!\cdots\!17}{55\!\cdots\!36}a^{12}+\frac{93\!\cdots\!37}{44\!\cdots\!88}a^{11}-\frac{32\!\cdots\!47}{44\!\cdots\!88}a^{10}-\frac{15\!\cdots\!93}{27\!\cdots\!68}a^{9}+\frac{16\!\cdots\!35}{22\!\cdots\!44}a^{8}+\frac{21\!\cdots\!39}{11\!\cdots\!72}a^{7}+\frac{32\!\cdots\!41}{11\!\cdots\!72}a^{6}+\frac{16\!\cdots\!19}{13\!\cdots\!84}a^{5}-\frac{60\!\cdots\!69}{55\!\cdots\!36}a^{4}+\frac{46\!\cdots\!13}{13\!\cdots\!84}a^{3}-\frac{11\!\cdots\!11}{34\!\cdots\!96}a^{2}-\frac{14\!\cdots\!63}{17\!\cdots\!48}a+\frac{19\!\cdots\!89}{36\!\cdots\!16}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{66572}$, which has order $133144$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{459411304400839888851}{17789599986227678503618405888} a^{23} + \frac{3763570167072784863913}{17789599986227678503618405888} a^{22} - \frac{46373891063689651132841}{17789599986227678503618405888} a^{21} + \frac{281682785030315058618989}{17789599986227678503618405888} a^{20} - \frac{932229259100234072227001}{8894799993113839251809202944} a^{19} + \frac{4303017318268350835872627}{8894799993113839251809202944} a^{18} - \frac{9700286202505765435474601}{4447399996556919625904601472} a^{17} + \frac{69255460343875853684581493}{8894799993113839251809202944} a^{16} - \frac{459045176726514790915831727}{17789599986227678503618405888} a^{15} + \frac{1292953926912676857447553641}{17789599986227678503618405888} a^{14} - \frac{3306857445918411568661139765}{17789599986227678503618405888} a^{13} + \frac{7512096432276593808669438709}{17789599986227678503618405888} a^{12} - \frac{59441082271093680366071865}{69490624946201869154759398} a^{11} + \frac{3435144018061755826062023117}{2223699998278459812952300736} a^{10} - \frac{22260024691537357712551032459}{8894799993113839251809202944} a^{9} + \frac{15521677245184072848993528781}{4447399996556919625904601472} a^{8} - \frac{19463329707555338752556281015}{4447399996556919625904601472} a^{7} + \frac{2540592952704045732681555407}{555924999569614953238075184} a^{6} - \frac{8871817588602631277458911821}{2223699998278459812952300736} a^{5} + \frac{217155206137257352045133623}{69490624946201869154759398} a^{4} - \frac{2588015391105294889128541707}{1111849999139229906476150368} a^{3} + \frac{426497101055702891661414857}{277962499784807476619037592} a^{2} - \frac{287870944438655549045472957}{138981249892403738309518796} a + \frac{87774549512710888105963}{145377876456489266014141} \)  (order $4$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{23\!\cdots\!93}{66\!\cdots\!16}a^{23}-\frac{65\!\cdots\!85}{26\!\cdots\!64}a^{22}+\frac{88\!\cdots\!31}{26\!\cdots\!64}a^{21}-\frac{47\!\cdots\!07}{26\!\cdots\!64}a^{20}+\frac{19\!\cdots\!09}{15\!\cdots\!92}a^{19}-\frac{17\!\cdots\!19}{33\!\cdots\!08}a^{18}+\frac{16\!\cdots\!97}{66\!\cdots\!16}a^{17}-\frac{10\!\cdots\!41}{13\!\cdots\!32}a^{16}+\frac{21\!\cdots\!67}{78\!\cdots\!96}a^{15}-\frac{18\!\cdots\!49}{26\!\cdots\!64}a^{14}+\frac{48\!\cdots\!59}{26\!\cdots\!64}a^{13}-\frac{10\!\cdots\!75}{26\!\cdots\!64}a^{12}+\frac{19\!\cdots\!61}{26\!\cdots\!64}a^{11}-\frac{16\!\cdots\!33}{13\!\cdots\!32}a^{10}+\frac{24\!\cdots\!97}{13\!\cdots\!32}a^{9}-\frac{77\!\cdots\!47}{33\!\cdots\!08}a^{8}+\frac{16\!\cdots\!09}{66\!\cdots\!16}a^{7}-\frac{60\!\cdots\!79}{33\!\cdots\!08}a^{6}+\frac{41\!\cdots\!11}{33\!\cdots\!08}a^{5}-\frac{49\!\cdots\!95}{16\!\cdots\!04}a^{4}-\frac{54\!\cdots\!55}{41\!\cdots\!76}a^{3}-\frac{17\!\cdots\!19}{10\!\cdots\!44}a^{2}+\frac{20\!\cdots\!07}{25\!\cdots\!86}a+\frac{52\!\cdots\!07}{25\!\cdots\!86}$, $\frac{57\!\cdots\!27}{93\!\cdots\!12}a^{23}-\frac{65\!\cdots\!15}{14\!\cdots\!92}a^{22}+\frac{85\!\cdots\!97}{14\!\cdots\!92}a^{21}-\frac{46\!\cdots\!37}{14\!\cdots\!92}a^{20}+\frac{18\!\cdots\!31}{88\!\cdots\!76}a^{19}-\frac{84\!\cdots\!47}{93\!\cdots\!12}a^{18}+\frac{15\!\cdots\!33}{37\!\cdots\!48}a^{17}-\frac{99\!\cdots\!87}{74\!\cdots\!96}a^{16}+\frac{19\!\cdots\!87}{44\!\cdots\!88}a^{15}-\frac{16\!\cdots\!07}{14\!\cdots\!92}a^{14}+\frac{40\!\cdots\!41}{14\!\cdots\!92}a^{13}-\frac{84\!\cdots\!29}{14\!\cdots\!92}a^{12}+\frac{15\!\cdots\!67}{14\!\cdots\!92}a^{11}-\frac{12\!\cdots\!71}{74\!\cdots\!96}a^{10}+\frac{18\!\cdots\!19}{74\!\cdots\!96}a^{9}-\frac{53\!\cdots\!75}{18\!\cdots\!24}a^{8}+\frac{11\!\cdots\!19}{37\!\cdots\!48}a^{7}-\frac{35\!\cdots\!65}{18\!\cdots\!24}a^{6}+\frac{10\!\cdots\!73}{18\!\cdots\!24}a^{5}+\frac{57\!\cdots\!83}{93\!\cdots\!12}a^{4}-\frac{10\!\cdots\!09}{23\!\cdots\!28}a^{3}+\frac{13\!\cdots\!89}{11\!\cdots\!64}a^{2}-\frac{33\!\cdots\!33}{29\!\cdots\!16}a+\frac{99\!\cdots\!96}{30\!\cdots\!61}$, $\frac{10\!\cdots\!71}{55\!\cdots\!36}a^{23}-\frac{66\!\cdots\!51}{44\!\cdots\!88}a^{22}+\frac{84\!\cdots\!43}{44\!\cdots\!88}a^{21}-\frac{50\!\cdots\!75}{44\!\cdots\!88}a^{20}+\frac{20\!\cdots\!69}{25\!\cdots\!64}a^{19}-\frac{79\!\cdots\!31}{22\!\cdots\!44}a^{18}+\frac{91\!\cdots\!93}{55\!\cdots\!36}a^{17}-\frac{13\!\cdots\!23}{22\!\cdots\!44}a^{16}+\frac{25\!\cdots\!33}{12\!\cdots\!32}a^{15}-\frac{25\!\cdots\!47}{44\!\cdots\!88}a^{14}+\frac{65\!\cdots\!35}{44\!\cdots\!88}a^{13}-\frac{14\!\cdots\!19}{44\!\cdots\!88}a^{12}+\frac{30\!\cdots\!57}{44\!\cdots\!88}a^{11}-\frac{14\!\cdots\!39}{11\!\cdots\!72}a^{10}+\frac{46\!\cdots\!39}{22\!\cdots\!44}a^{9}-\frac{33\!\cdots\!47}{11\!\cdots\!72}a^{8}+\frac{43\!\cdots\!45}{11\!\cdots\!72}a^{7}-\frac{59\!\cdots\!51}{13\!\cdots\!84}a^{6}+\frac{22\!\cdots\!85}{55\!\cdots\!36}a^{5}-\frac{23\!\cdots\!77}{68\!\cdots\!92}a^{4}+\frac{17\!\cdots\!93}{68\!\cdots\!92}a^{3}-\frac{77\!\cdots\!41}{34\!\cdots\!96}a^{2}+\frac{22\!\cdots\!33}{86\!\cdots\!24}a-\frac{18\!\cdots\!63}{18\!\cdots\!58}$, $\frac{23\!\cdots\!93}{66\!\cdots\!16}a^{23}-\frac{65\!\cdots\!85}{26\!\cdots\!64}a^{22}+\frac{88\!\cdots\!31}{26\!\cdots\!64}a^{21}-\frac{47\!\cdots\!07}{26\!\cdots\!64}a^{20}+\frac{19\!\cdots\!09}{15\!\cdots\!92}a^{19}-\frac{17\!\cdots\!19}{33\!\cdots\!08}a^{18}+\frac{16\!\cdots\!97}{66\!\cdots\!16}a^{17}-\frac{10\!\cdots\!41}{13\!\cdots\!32}a^{16}+\frac{21\!\cdots\!67}{78\!\cdots\!96}a^{15}-\frac{18\!\cdots\!49}{26\!\cdots\!64}a^{14}+\frac{48\!\cdots\!59}{26\!\cdots\!64}a^{13}-\frac{10\!\cdots\!75}{26\!\cdots\!64}a^{12}+\frac{19\!\cdots\!61}{26\!\cdots\!64}a^{11}-\frac{16\!\cdots\!33}{13\!\cdots\!32}a^{10}+\frac{24\!\cdots\!97}{13\!\cdots\!32}a^{9}-\frac{77\!\cdots\!47}{33\!\cdots\!08}a^{8}+\frac{16\!\cdots\!09}{66\!\cdots\!16}a^{7}-\frac{60\!\cdots\!79}{33\!\cdots\!08}a^{6}+\frac{41\!\cdots\!11}{33\!\cdots\!08}a^{5}-\frac{49\!\cdots\!95}{16\!\cdots\!04}a^{4}-\frac{54\!\cdots\!55}{41\!\cdots\!76}a^{3}-\frac{17\!\cdots\!19}{10\!\cdots\!44}a^{2}+\frac{20\!\cdots\!07}{25\!\cdots\!86}a+\frac{10\!\cdots\!79}{25\!\cdots\!86}$, $\frac{13\!\cdots\!85}{22\!\cdots\!44}a^{23}-\frac{23\!\cdots\!41}{44\!\cdots\!88}a^{22}+\frac{27\!\cdots\!15}{44\!\cdots\!88}a^{21}-\frac{17\!\cdots\!47}{44\!\cdots\!88}a^{20}+\frac{64\!\cdots\!55}{25\!\cdots\!64}a^{19}-\frac{12\!\cdots\!25}{11\!\cdots\!72}a^{18}+\frac{27\!\cdots\!75}{55\!\cdots\!36}a^{17}-\frac{38\!\cdots\!21}{22\!\cdots\!44}a^{16}+\frac{17\!\cdots\!55}{32\!\cdots\!08}a^{15}-\frac{64\!\cdots\!93}{44\!\cdots\!88}a^{14}+\frac{15\!\cdots\!63}{44\!\cdots\!88}a^{13}-\frac{32\!\cdots\!23}{44\!\cdots\!88}a^{12}+\frac{60\!\cdots\!03}{44\!\cdots\!88}a^{11}-\frac{48\!\cdots\!55}{22\!\cdots\!44}a^{10}+\frac{71\!\cdots\!55}{22\!\cdots\!44}a^{9}-\frac{20\!\cdots\!43}{55\!\cdots\!36}a^{8}+\frac{42\!\cdots\!27}{11\!\cdots\!72}a^{7}-\frac{19\!\cdots\!97}{55\!\cdots\!36}a^{6}+\frac{98\!\cdots\!61}{55\!\cdots\!36}a^{5}-\frac{41\!\cdots\!35}{27\!\cdots\!68}a^{4}+\frac{29\!\cdots\!71}{86\!\cdots\!24}a^{3}-\frac{49\!\cdots\!31}{34\!\cdots\!96}a^{2}+\frac{68\!\cdots\!54}{21\!\cdots\!31}a-\frac{30\!\cdots\!32}{90\!\cdots\!29}$, $\frac{24\!\cdots\!31}{26\!\cdots\!64}a^{23}-\frac{22\!\cdots\!41}{26\!\cdots\!64}a^{22}+\frac{27\!\cdots\!45}{26\!\cdots\!64}a^{21}-\frac{17\!\cdots\!09}{26\!\cdots\!64}a^{20}+\frac{14\!\cdots\!55}{33\!\cdots\!08}a^{19}-\frac{27\!\cdots\!83}{13\!\cdots\!32}a^{18}+\frac{12\!\cdots\!81}{13\!\cdots\!32}a^{17}-\frac{45\!\cdots\!95}{13\!\cdots\!32}a^{16}+\frac{29\!\cdots\!51}{26\!\cdots\!64}a^{15}-\frac{83\!\cdots\!77}{26\!\cdots\!64}a^{14}+\frac{21\!\cdots\!37}{26\!\cdots\!64}a^{13}-\frac{46\!\cdots\!57}{26\!\cdots\!64}a^{12}+\frac{45\!\cdots\!35}{13\!\cdots\!32}a^{11}-\frac{49\!\cdots\!15}{83\!\cdots\!52}a^{10}+\frac{58\!\cdots\!25}{66\!\cdots\!16}a^{9}-\frac{94\!\cdots\!45}{83\!\cdots\!52}a^{8}+\frac{39\!\cdots\!23}{33\!\cdots\!08}a^{7}-\frac{15\!\cdots\!09}{16\!\cdots\!04}a^{6}+\frac{23\!\cdots\!63}{41\!\cdots\!76}a^{5}-\frac{91\!\cdots\!59}{16\!\cdots\!04}a^{4}+\frac{14\!\cdots\!13}{41\!\cdots\!76}a^{3}-\frac{15\!\cdots\!11}{20\!\cdots\!88}a^{2}+\frac{59\!\cdots\!72}{12\!\cdots\!93}a+\frac{13\!\cdots\!21}{12\!\cdots\!93}$, $\frac{15\!\cdots\!29}{34\!\cdots\!88}a^{23}-\frac{10\!\cdots\!61}{27\!\cdots\!04}a^{22}+\frac{12\!\cdots\!87}{27\!\cdots\!04}a^{21}-\frac{76\!\cdots\!69}{27\!\cdots\!04}a^{20}+\frac{52\!\cdots\!49}{27\!\cdots\!04}a^{19}-\frac{11\!\cdots\!01}{13\!\cdots\!52}a^{18}+\frac{13\!\cdots\!61}{34\!\cdots\!88}a^{17}-\frac{18\!\cdots\!37}{13\!\cdots\!52}a^{16}+\frac{62\!\cdots\!41}{13\!\cdots\!52}a^{15}-\frac{33\!\cdots\!37}{27\!\cdots\!04}a^{14}+\frac{86\!\cdots\!31}{27\!\cdots\!04}a^{13}-\frac{18\!\cdots\!41}{27\!\cdots\!04}a^{12}+\frac{36\!\cdots\!49}{27\!\cdots\!04}a^{11}-\frac{15\!\cdots\!37}{69\!\cdots\!76}a^{10}+\frac{45\!\cdots\!27}{13\!\cdots\!52}a^{9}-\frac{28\!\cdots\!03}{69\!\cdots\!76}a^{8}+\frac{29\!\cdots\!81}{69\!\cdots\!76}a^{7}-\frac{26\!\cdots\!27}{86\!\cdots\!72}a^{6}+\frac{54\!\cdots\!29}{34\!\cdots\!88}a^{5}+\frac{75\!\cdots\!73}{86\!\cdots\!72}a^{4}-\frac{13\!\cdots\!52}{26\!\cdots\!21}a^{3}-\frac{53\!\cdots\!95}{21\!\cdots\!68}a^{2}+\frac{10\!\cdots\!51}{53\!\cdots\!42}a-\frac{62\!\cdots\!68}{26\!\cdots\!21}$, $\frac{37\!\cdots\!19}{22\!\cdots\!44}a^{23}-\frac{37\!\cdots\!15}{22\!\cdots\!44}a^{22}+\frac{42\!\cdots\!31}{22\!\cdots\!44}a^{21}-\frac{28\!\cdots\!59}{22\!\cdots\!44}a^{20}+\frac{90\!\cdots\!31}{11\!\cdots\!72}a^{19}-\frac{44\!\cdots\!57}{11\!\cdots\!72}a^{18}+\frac{19\!\cdots\!35}{11\!\cdots\!72}a^{17}-\frac{73\!\cdots\!61}{11\!\cdots\!72}a^{16}+\frac{48\!\cdots\!83}{22\!\cdots\!44}a^{15}-\frac{13\!\cdots\!51}{22\!\cdots\!44}a^{14}+\frac{34\!\cdots\!67}{22\!\cdots\!44}a^{13}-\frac{46\!\cdots\!55}{12\!\cdots\!32}a^{12}+\frac{39\!\cdots\!97}{55\!\cdots\!36}a^{11}-\frac{35\!\cdots\!63}{27\!\cdots\!68}a^{10}+\frac{11\!\cdots\!41}{55\!\cdots\!36}a^{9}-\frac{38\!\cdots\!93}{13\!\cdots\!84}a^{8}+\frac{92\!\cdots\!45}{27\!\cdots\!68}a^{7}-\frac{12\!\cdots\!19}{34\!\cdots\!96}a^{6}+\frac{20\!\cdots\!21}{68\!\cdots\!92}a^{5}-\frac{31\!\cdots\!49}{13\!\cdots\!84}a^{4}+\frac{14\!\cdots\!73}{68\!\cdots\!92}a^{3}-\frac{69\!\cdots\!57}{34\!\cdots\!96}a^{2}+\frac{15\!\cdots\!86}{12\!\cdots\!43}a-\frac{11\!\cdots\!69}{18\!\cdots\!58}$, $\frac{24\!\cdots\!23}{26\!\cdots\!64}a^{23}-\frac{47\!\cdots\!23}{26\!\cdots\!64}a^{22}+\frac{45\!\cdots\!61}{26\!\cdots\!64}a^{21}-\frac{40\!\cdots\!13}{26\!\cdots\!64}a^{20}+\frac{30\!\cdots\!09}{33\!\cdots\!08}a^{19}-\frac{17\!\cdots\!07}{33\!\cdots\!08}a^{18}+\frac{30\!\cdots\!23}{13\!\cdots\!32}a^{17}-\frac{12\!\cdots\!65}{13\!\cdots\!32}a^{16}+\frac{84\!\cdots\!27}{26\!\cdots\!64}a^{15}-\frac{25\!\cdots\!95}{26\!\cdots\!64}a^{14}+\frac{67\!\cdots\!33}{26\!\cdots\!64}a^{13}-\frac{15\!\cdots\!65}{26\!\cdots\!64}a^{12}+\frac{16\!\cdots\!75}{13\!\cdots\!32}a^{11}-\frac{30\!\cdots\!55}{13\!\cdots\!32}a^{10}+\frac{12\!\cdots\!51}{33\!\cdots\!08}a^{9}-\frac{36\!\cdots\!15}{66\!\cdots\!16}a^{8}+\frac{22\!\cdots\!17}{33\!\cdots\!08}a^{7}-\frac{24\!\cdots\!57}{33\!\cdots\!08}a^{6}+\frac{11\!\cdots\!29}{16\!\cdots\!04}a^{5}-\frac{40\!\cdots\!07}{83\!\cdots\!52}a^{4}+\frac{89\!\cdots\!59}{20\!\cdots\!88}a^{3}-\frac{94\!\cdots\!11}{20\!\cdots\!88}a^{2}+\frac{14\!\cdots\!87}{51\!\cdots\!72}a-\frac{46\!\cdots\!35}{25\!\cdots\!86}$, $\frac{29\!\cdots\!73}{11\!\cdots\!72}a^{23}-\frac{65\!\cdots\!95}{44\!\cdots\!88}a^{22}+\frac{10\!\cdots\!33}{44\!\cdots\!88}a^{21}-\frac{27\!\cdots\!81}{25\!\cdots\!64}a^{20}+\frac{37\!\cdots\!59}{44\!\cdots\!88}a^{19}-\frac{34\!\cdots\!31}{11\!\cdots\!72}a^{18}+\frac{18\!\cdots\!67}{11\!\cdots\!72}a^{17}-\frac{10\!\cdots\!95}{22\!\cdots\!44}a^{16}+\frac{40\!\cdots\!53}{22\!\cdots\!44}a^{15}-\frac{18\!\cdots\!03}{44\!\cdots\!88}a^{14}+\frac{54\!\cdots\!37}{44\!\cdots\!88}a^{13}-\frac{10\!\cdots\!09}{44\!\cdots\!88}a^{12}+\frac{13\!\cdots\!07}{25\!\cdots\!64}a^{11}-\frac{18\!\cdots\!17}{22\!\cdots\!44}a^{10}+\frac{31\!\cdots\!07}{22\!\cdots\!44}a^{9}-\frac{49\!\cdots\!89}{27\!\cdots\!68}a^{8}+\frac{25\!\cdots\!95}{11\!\cdots\!72}a^{7}-\frac{10\!\cdots\!87}{55\!\cdots\!36}a^{6}+\frac{76\!\cdots\!69}{32\!\cdots\!08}a^{5}-\frac{23\!\cdots\!03}{27\!\cdots\!68}a^{4}+\frac{65\!\cdots\!77}{34\!\cdots\!96}a^{3}-\frac{29\!\cdots\!89}{34\!\cdots\!96}a^{2}+\frac{43\!\cdots\!27}{43\!\cdots\!62}a-\frac{21\!\cdots\!33}{90\!\cdots\!29}$, $\frac{88\!\cdots\!37}{44\!\cdots\!88}a^{23}-\frac{34\!\cdots\!39}{22\!\cdots\!44}a^{22}+\frac{21\!\cdots\!47}{11\!\cdots\!72}a^{21}-\frac{25\!\cdots\!81}{22\!\cdots\!44}a^{20}+\frac{33\!\cdots\!43}{44\!\cdots\!88}a^{19}-\frac{37\!\cdots\!27}{11\!\cdots\!72}a^{18}+\frac{33\!\cdots\!23}{22\!\cdots\!44}a^{17}-\frac{28\!\cdots\!19}{55\!\cdots\!36}a^{16}+\frac{73\!\cdots\!03}{44\!\cdots\!88}a^{15}-\frac{99\!\cdots\!67}{22\!\cdots\!44}a^{14}+\frac{61\!\cdots\!19}{55\!\cdots\!36}a^{13}-\frac{53\!\cdots\!89}{22\!\cdots\!44}a^{12}+\frac{20\!\cdots\!13}{44\!\cdots\!88}a^{11}-\frac{44\!\cdots\!75}{55\!\cdots\!36}a^{10}+\frac{26\!\cdots\!23}{22\!\cdots\!44}a^{9}-\frac{17\!\cdots\!51}{11\!\cdots\!72}a^{8}+\frac{20\!\cdots\!33}{11\!\cdots\!72}a^{7}-\frac{24\!\cdots\!61}{13\!\cdots\!84}a^{6}+\frac{73\!\cdots\!23}{55\!\cdots\!36}a^{5}-\frac{26\!\cdots\!69}{27\!\cdots\!68}a^{4}+\frac{56\!\cdots\!43}{68\!\cdots\!92}a^{3}-\frac{15\!\cdots\!55}{34\!\cdots\!96}a^{2}+\frac{25\!\cdots\!21}{86\!\cdots\!24}a-\frac{20\!\cdots\!88}{90\!\cdots\!29}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1125992180218.7246 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 1125992180218.7246 \cdot 133144}{4\cdot\sqrt{45709683595991970654497806956957696000000000000}}\cr\approx \mathstrut & 663.668639092578 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^23 + 102*x^22 - 612*x^21 + 4179*x^20 - 19236*x^19 + 89532*x^18 - 321504*x^17 + 1103631*x^16 - 3152176*x^15 + 8359414*x^14 - 19416180*x^13 + 40793493*x^12 - 76852756*x^11 + 129341224*x^10 - 193089256*x^9 + 258275000*x^8 - 296026256*x^7 + 300495808*x^6 - 266701408*x^5 + 208845136*x^4 - 178117888*x^3 + 171891200*x^2 - 95447040*x + 58491904)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 8*x^23 + 102*x^22 - 612*x^21 + 4179*x^20 - 19236*x^19 + 89532*x^18 - 321504*x^17 + 1103631*x^16 - 3152176*x^15 + 8359414*x^14 - 19416180*x^13 + 40793493*x^12 - 76852756*x^11 + 129341224*x^10 - 193089256*x^9 + 258275000*x^8 - 296026256*x^7 + 300495808*x^6 - 266701408*x^5 + 208845136*x^4 - 178117888*x^3 + 171891200*x^2 - 95447040*x + 58491904, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 8*x^23 + 102*x^22 - 612*x^21 + 4179*x^20 - 19236*x^19 + 89532*x^18 - 321504*x^17 + 1103631*x^16 - 3152176*x^15 + 8359414*x^14 - 19416180*x^13 + 40793493*x^12 - 76852756*x^11 + 129341224*x^10 - 193089256*x^9 + 258275000*x^8 - 296026256*x^7 + 300495808*x^6 - 266701408*x^5 + 208845136*x^4 - 178117888*x^3 + 171891200*x^2 - 95447040*x + 58491904);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 8*x^23 + 102*x^22 - 612*x^21 + 4179*x^20 - 19236*x^19 + 89532*x^18 - 321504*x^17 + 1103631*x^16 - 3152176*x^15 + 8359414*x^14 - 19416180*x^13 + 40793493*x^12 - 76852756*x^11 + 129341224*x^10 - 193089256*x^9 + 258275000*x^8 - 296026256*x^7 + 300495808*x^6 - 266701408*x^5 + 208845136*x^4 - 178117888*x^3 + 171891200*x^2 - 95447040*x + 58491904);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times D_6$ (as 24T30):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 48
The 24 conjugacy class representatives for $C_2^2\times D_6$
Character table for $C_2^2\times D_6$

Intermediate fields

\(\Q(\sqrt{-15}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-105}) \), 3.3.316.1, \(\Q(\sqrt{-7}, \sqrt{15})\), \(\Q(\sqrt{-7}, \sqrt{-15})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{15})\), \(\Q(\sqrt{7}, \sqrt{15})\), \(\Q(\sqrt{7}, \sqrt{-15})\), \(\Q(i, \sqrt{105})\), 6.0.337014000.4, 6.6.115595802000.1, 6.0.399424.1, 6.6.137002432.1, 6.0.34250608.1, 6.6.1348056000.1, 6.0.462383208000.2, 8.0.31116960000.7, 12.0.213798231040371264000000.2, 12.0.13362389440023204000000.1, 12.0.18769666373914624.1, 12.0.1817254979136000000.1, 12.12.213798231040371264000000.1, 12.0.213798231040371264000000.1, 12.0.213798231040371264000000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R R R ${\href{/padicField/11.2.0.1}{2} }^{12}$ ${\href{/padicField/13.6.0.1}{6} }^{4}$ ${\href{/padicField/17.2.0.1}{2} }^{12}$ ${\href{/padicField/19.2.0.1}{2} }^{12}$ ${\href{/padicField/23.2.0.1}{2} }^{12}$ ${\href{/padicField/29.2.0.1}{2} }^{12}$ ${\href{/padicField/31.2.0.1}{2} }^{12}$ ${\href{/padicField/37.2.0.1}{2} }^{12}$ ${\href{/padicField/41.2.0.1}{2} }^{12}$ ${\href{/padicField/43.2.0.1}{2} }^{12}$ ${\href{/padicField/47.6.0.1}{6} }^{4}$ ${\href{/padicField/53.2.0.1}{2} }^{8}{,}\,{\href{/padicField/53.1.0.1}{1} }^{8}$ ${\href{/padicField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
\(3\) Copy content Toggle raw display 3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
3.12.6.2$x^{12} + 22 x^{10} + 177 x^{8} + 4 x^{7} + 644 x^{6} - 100 x^{5} + 876 x^{4} - 224 x^{3} + 1076 x^{2} + 344 x + 112$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(7\) Copy content Toggle raw display 7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
7.12.6.1$x^{12} + 44 x^{10} + 10 x^{9} + 786 x^{8} + 22 x^{7} + 6899 x^{6} - 3434 x^{5} + 31050 x^{4} - 28440 x^{3} + 84557 x^{2} - 48082 x + 107648$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(79\) Copy content Toggle raw display 79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.0.1$x^{2} + 78 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
79.4.2.1$x^{4} + 156 x^{3} + 6248 x^{2} + 12792 x + 486412$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$