Normalized defining polynomial
\( x^{24} - x^{23} - x^{22} + 3 x^{21} - x^{20} - 5 x^{19} + 7 x^{18} + 3 x^{17} - 17 x^{16} + 11 x^{15} + 23 x^{14} - 45 x^{13} - x^{12} - 90 x^{11} + 92 x^{10} + 88 x^{9} - 272 x^{8} + 96 x^{7} + 448 x^{6} - 640 x^{5} - 256 x^{4} + 1536 x^{3} - 1024 x^{2} - 2048 x + 4096 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44455984353110737022824200630534169=7^{12}\cdot 13^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(91=7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{91}(64,·)$, $\chi_{91}(1,·)$, $\chi_{91}(69,·)$, $\chi_{91}(6,·)$, $\chi_{91}(71,·)$, $\chi_{91}(8,·)$, $\chi_{91}(76,·)$, $\chi_{91}(15,·)$, $\chi_{91}(83,·)$, $\chi_{91}(20,·)$, $\chi_{91}(85,·)$, $\chi_{91}(22,·)$, $\chi_{91}(90,·)$, $\chi_{91}(27,·)$, $\chi_{91}(29,·)$, $\chi_{91}(34,·)$, $\chi_{91}(36,·)$, $\chi_{91}(41,·)$, $\chi_{91}(43,·)$, $\chi_{91}(48,·)$, $\chi_{91}(50,·)$, $\chi_{91}(55,·)$, $\chi_{91}(57,·)$, $\chi_{91}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} + \frac{3}{8} a^{12} - \frac{1}{8} a^{11} + \frac{3}{8} a^{10} - \frac{1}{8} a^{9} + \frac{3}{8} a^{8} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{16} - \frac{1}{16} a^{15} - \frac{1}{16} a^{14} + \frac{3}{16} a^{13} - \frac{1}{16} a^{12} - \frac{5}{16} a^{11} + \frac{7}{16} a^{10} + \frac{3}{16} a^{9} - \frac{1}{16} a^{8} - \frac{5}{16} a^{7} + \frac{7}{16} a^{6} + \frac{3}{16} a^{5} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{16} - \frac{1}{32} a^{15} + \frac{3}{32} a^{14} - \frac{1}{32} a^{13} - \frac{5}{32} a^{12} + \frac{7}{32} a^{11} + \frac{3}{32} a^{10} + \frac{15}{32} a^{9} + \frac{11}{32} a^{8} - \frac{9}{32} a^{7} - \frac{13}{32} a^{6} - \frac{1}{32} a^{5} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{17} - \frac{1}{64} a^{16} + \frac{3}{64} a^{15} - \frac{1}{64} a^{14} - \frac{5}{64} a^{13} + \frac{7}{64} a^{12} + \frac{3}{64} a^{11} - \frac{17}{64} a^{10} + \frac{11}{64} a^{9} + \frac{23}{64} a^{8} + \frac{19}{64} a^{7} - \frac{1}{64} a^{6} - \frac{13}{32} a^{5} + \frac{7}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{19} - \frac{1}{128} a^{18} - \frac{1}{128} a^{17} + \frac{3}{128} a^{16} - \frac{1}{128} a^{15} - \frac{5}{128} a^{14} + \frac{7}{128} a^{13} + \frac{3}{128} a^{12} - \frac{17}{128} a^{11} + \frac{11}{128} a^{10} + \frac{23}{128} a^{9} - \frac{45}{128} a^{8} - \frac{1}{128} a^{7} + \frac{19}{64} a^{6} - \frac{9}{32} a^{5} - \frac{5}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{20} - \frac{1}{256} a^{19} - \frac{1}{256} a^{18} + \frac{3}{256} a^{17} - \frac{1}{256} a^{16} - \frac{5}{256} a^{15} + \frac{7}{256} a^{14} + \frac{3}{256} a^{13} - \frac{17}{256} a^{12} + \frac{11}{256} a^{11} + \frac{23}{256} a^{10} - \frac{45}{256} a^{9} - \frac{1}{256} a^{8} - \frac{45}{128} a^{7} + \frac{23}{64} a^{6} + \frac{11}{32} a^{5} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{512} a^{21} - \frac{1}{512} a^{20} - \frac{1}{512} a^{19} + \frac{3}{512} a^{18} - \frac{1}{512} a^{17} - \frac{5}{512} a^{16} + \frac{7}{512} a^{15} + \frac{3}{512} a^{14} - \frac{17}{512} a^{13} + \frac{11}{512} a^{12} + \frac{23}{512} a^{11} - \frac{45}{512} a^{10} - \frac{1}{512} a^{9} - \frac{45}{256} a^{8} + \frac{23}{128} a^{7} + \frac{11}{64} a^{6} + \frac{15}{32} a^{5} + \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1024} a^{22} - \frac{1}{1024} a^{21} - \frac{1}{1024} a^{20} + \frac{3}{1024} a^{19} - \frac{1}{1024} a^{18} - \frac{5}{1024} a^{17} + \frac{7}{1024} a^{16} + \frac{3}{1024} a^{15} - \frac{17}{1024} a^{14} + \frac{11}{1024} a^{13} + \frac{23}{1024} a^{12} - \frac{45}{1024} a^{11} - \frac{1}{1024} a^{10} - \frac{45}{512} a^{9} + \frac{23}{256} a^{8} + \frac{11}{128} a^{7} - \frac{17}{64} a^{6} + \frac{3}{32} a^{5} + \frac{7}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{2048} a^{23} - \frac{1}{2048} a^{22} - \frac{1}{2048} a^{21} + \frac{3}{2048} a^{20} - \frac{1}{2048} a^{19} - \frac{5}{2048} a^{18} + \frac{7}{2048} a^{17} + \frac{3}{2048} a^{16} - \frac{17}{2048} a^{15} + \frac{11}{2048} a^{14} + \frac{23}{2048} a^{13} - \frac{45}{2048} a^{12} - \frac{1}{2048} a^{11} - \frac{45}{1024} a^{10} + \frac{23}{512} a^{9} + \frac{11}{256} a^{8} - \frac{17}{128} a^{7} + \frac{3}{64} a^{6} + \frac{7}{32} a^{5} - \frac{5}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{2} a^{14} + \frac{91}{2} a \) (order $26$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42757649.54957395 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{6}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 13 | Data not computed | ||||||