Normalized defining polynomial
\( x^{24} - 9 x^{22} + 67 x^{20} - 478 x^{18} + 3373 x^{16} - 6558 x^{14} + 12278 x^{12} - 22063 x^{10} + 33233 x^{8} - 2493 x^{6} + 187 x^{4} - 14 x^{2} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(42586662987723509824000000000000000000=2^{24}\cdot 5^{18}\cdot 13^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(260=2^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{260}(1,·)$, $\chi_{260}(3,·)$, $\chi_{260}(133,·)$, $\chi_{260}(243,·)$, $\chi_{260}(9,·)$, $\chi_{260}(139,·)$, $\chi_{260}(79,·)$, $\chi_{260}(81,·)$, $\chi_{260}(131,·)$, $\chi_{260}(87,·)$, $\chi_{260}(217,·)$, $\chi_{260}(27,·)$, $\chi_{260}(29,·)$, $\chi_{260}(159,·)$, $\chi_{260}(209,·)$, $\chi_{260}(107,·)$, $\chi_{260}(237,·)$, $\chi_{260}(157,·)$, $\chi_{260}(113,·)$, $\chi_{260}(211,·)$, $\chi_{260}(53,·)$, $\chi_{260}(183,·)$, $\chi_{260}(61,·)$, $\chi_{260}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{12} + \frac{1}{5} a^{8} + \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{13} + \frac{1}{5} a^{9} + \frac{1}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{554516275} a^{18} - \frac{50811331}{554516275} a^{16} + \frac{179665711}{554516275} a^{14} + \frac{203399784}{554516275} a^{12} + \frac{141023521}{554516275} a^{10} + \frac{69836499}{554516275} a^{8} + \frac{33642206}{554516275} a^{6} - \frac{161758786}{554516275} a^{4} - \frac{194030859}{554516275} a^{2} + \frac{95644604}{554516275}$, $\frac{1}{554516275} a^{19} - \frac{50811331}{554516275} a^{17} + \frac{179665711}{554516275} a^{15} + \frac{203399784}{554516275} a^{13} + \frac{141023521}{554516275} a^{11} + \frac{69836499}{554516275} a^{9} + \frac{33642206}{554516275} a^{7} - \frac{161758786}{554516275} a^{5} - \frac{194030859}{554516275} a^{3} + \frac{95644604}{554516275} a$, $\frac{1}{554516275} a^{20} - \frac{2792773}{22180651} a^{10} + \frac{200675724}{554516275}$, $\frac{1}{554516275} a^{21} - \frac{2792773}{22180651} a^{11} + \frac{200675724}{554516275} a$, $\frac{1}{554516275} a^{22} - \frac{2792773}{22180651} a^{12} + \frac{200675724}{554516275} a^{2}$, $\frac{1}{554516275} a^{23} - \frac{2792773}{22180651} a^{13} + \frac{200675724}{554516275} a^{3}$
Class group and class number
$C_{4}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3851}{554516275} a^{21} - \frac{2646912}{22180651} a^{11} - \frac{2024590874}{554516275} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 352314418.0293608 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $13$ | 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |