Normalized defining polynomial
\( x^{24} + 5 x^{22} + 16 x^{20} + 35 x^{18} + 31 x^{16} - 160 x^{14} - 1079 x^{12} - 1440 x^{10} + 2511 x^{8} + 25515 x^{6} + 104976 x^{4} + 295245 x^{2} + 531441 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4201389232919273300173938291676020736=2^{24}\cdot 7^{20}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(308=2^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{308}(1,·)$, $\chi_{308}(131,·)$, $\chi_{308}(197,·)$, $\chi_{308}(263,·)$, $\chi_{308}(265,·)$, $\chi_{308}(87,·)$, $\chi_{308}(109,·)$, $\chi_{308}(67,·)$, $\chi_{308}(23,·)$, $\chi_{308}(153,·)$, $\chi_{308}(155,·)$, $\chi_{308}(285,·)$, $\chi_{308}(199,·)$, $\chi_{308}(219,·)$, $\chi_{308}(243,·)$, $\chi_{308}(65,·)$, $\chi_{308}(241,·)$, $\chi_{308}(43,·)$, $\chi_{308}(45,·)$, $\chi_{308}(221,·)$, $\chi_{308}(177,·)$, $\chi_{308}(307,·)$, $\chi_{308}(89,·)$, $\chi_{308}(111,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9711} a^{14} + \frac{4}{9} a^{12} + \frac{2}{9} a^{10} + \frac{1}{9} a^{8} - \frac{4}{9} a^{6} - \frac{2}{9} a^{4} - \frac{1}{9} a^{2} - \frac{160}{1079}$, $\frac{1}{29133} a^{15} + \frac{4}{27} a^{13} + \frac{2}{27} a^{11} + \frac{1}{27} a^{9} - \frac{13}{27} a^{7} + \frac{7}{27} a^{5} - \frac{10}{27} a^{3} + \frac{919}{3237} a$, $\frac{1}{87399} a^{16} - \frac{4}{87399} a^{14} + \frac{2}{81} a^{12} - \frac{26}{81} a^{10} + \frac{14}{81} a^{8} - \frac{20}{81} a^{6} + \frac{17}{81} a^{4} + \frac{919}{9711} a^{2} + \frac{191}{1079}$, $\frac{1}{262197} a^{17} - \frac{4}{262197} a^{15} + \frac{2}{243} a^{13} - \frac{26}{243} a^{11} + \frac{95}{243} a^{9} - \frac{20}{243} a^{7} + \frac{17}{243} a^{5} + \frac{919}{29133} a^{3} + \frac{191}{3237} a$, $\frac{1}{786591} a^{18} - \frac{4}{786591} a^{16} - \frac{29}{786591} a^{14} - \frac{269}{729} a^{12} + \frac{95}{729} a^{10} - \frac{20}{729} a^{8} - \frac{226}{729} a^{6} + \frac{919}{87399} a^{4} + \frac{191}{9711} a^{2} + \frac{4}{1079}$, $\frac{1}{2359773} a^{19} - \frac{4}{2359773} a^{17} - \frac{29}{2359773} a^{15} - \frac{269}{2187} a^{13} + \frac{824}{2187} a^{11} - \frac{20}{2187} a^{9} - \frac{955}{2187} a^{7} - \frac{86480}{262197} a^{5} + \frac{9902}{29133} a^{3} - \frac{1075}{3237} a$, $\frac{1}{7079319} a^{20} - \frac{4}{7079319} a^{18} - \frac{29}{7079319} a^{16} - \frac{109}{7079319} a^{14} - \frac{2092}{6561} a^{12} - \frac{1478}{6561} a^{10} - \frac{1684}{6561} a^{8} + \frac{919}{786591} a^{6} + \frac{191}{87399} a^{4} + \frac{4}{9711} a^{2} - \frac{19}{1079}$, $\frac{1}{21237957} a^{21} - \frac{4}{21237957} a^{19} - \frac{29}{21237957} a^{17} - \frac{109}{21237957} a^{15} - \frac{2092}{19683} a^{13} + \frac{5083}{19683} a^{11} + \frac{4877}{19683} a^{9} + \frac{787510}{2359773} a^{7} - \frac{87208}{262197} a^{5} + \frac{9715}{29133} a^{3} - \frac{366}{1079} a$, $\frac{1}{63713871} a^{22} - \frac{4}{63713871} a^{20} - \frac{29}{63713871} a^{18} - \frac{109}{63713871} a^{16} - \frac{284}{63713871} a^{14} - \frac{1478}{59049} a^{12} + \frac{11438}{59049} a^{10} + \frac{919}{7079319} a^{8} + \frac{191}{786591} a^{6} + \frac{4}{87399} a^{4} - \frac{19}{9711} a^{2} - \frac{11}{1079}$, $\frac{1}{191141613} a^{23} - \frac{4}{191141613} a^{21} - \frac{29}{191141613} a^{19} - \frac{109}{191141613} a^{17} - \frac{284}{191141613} a^{15} - \frac{1478}{177147} a^{13} - \frac{47611}{177147} a^{11} + \frac{919}{21237957} a^{9} + \frac{191}{2359773} a^{7} + \frac{4}{262197} a^{5} - \frac{19}{29133} a^{3} - \frac{11}{3237} a$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{262197} a^{19} + \frac{15467}{262197} a^{5} \) (order $28$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 151397348.565616 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |