Normalized defining polynomial
\( x^{24} + 168 x^{22} + 11844 x^{20} + 459648 x^{18} + 10835370 x^{16} + 161744688 x^{14} + 1548576792 x^{12} + 9433773216 x^{10} + 35556683400 x^{8} + 78854821920 x^{6} + 95273908128 x^{4} + 54442233216 x^{2} + 10207918728 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(419957608266393538093113781921531638278568932278272=2^{93}\cdot 3^{12}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(83,·)$, $\chi_{672}(131,·)$, $\chi_{672}(227,·)$, $\chi_{672}(193,·)$, $\chi_{672}(457,·)$, $\chi_{672}(395,·)$, $\chi_{672}(635,·)$, $\chi_{672}(529,·)$, $\chi_{672}(467,·)$, $\chi_{672}(251,·)$, $\chi_{672}(121,·)$, $\chi_{672}(25,·)$, $\chi_{672}(289,·)$, $\chi_{672}(587,·)$, $\chi_{672}(419,·)$, $\chi_{672}(337,·)$, $\chi_{672}(169,·)$, $\chi_{672}(299,·)$, $\chi_{672}(625,·)$, $\chi_{672}(563,·)$, $\chi_{672}(361,·)$, $\chi_{672}(505,·)$, $\chi_{672}(59,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{189} a^{6}$, $\frac{1}{189} a^{7}$, $\frac{1}{1134} a^{8}$, $\frac{1}{1134} a^{9}$, $\frac{1}{3402} a^{10}$, $\frac{1}{3402} a^{11}$, $\frac{1}{71442} a^{12}$, $\frac{1}{71442} a^{13}$, $\frac{1}{214326} a^{14}$, $\frac{1}{214326} a^{15}$, $\frac{1}{1285956} a^{16}$, $\frac{1}{1285956} a^{17}$, $\frac{1}{27005076} a^{18}$, $\frac{1}{27005076} a^{19}$, $\frac{1}{9154720764} a^{20} + \frac{25}{3051573588} a^{18} - \frac{1}{4036473} a^{16} + \frac{1}{896994} a^{14} + \frac{53}{8072946} a^{12} + \frac{22}{192213} a^{10} - \frac{1}{4746} a^{8} - \frac{16}{7119} a^{6} + \frac{50}{1017} a^{4} - \frac{53}{339} a^{2} + \frac{7}{113}$, $\frac{1}{9154720764} a^{21} + \frac{25}{3051573588} a^{19} - \frac{1}{4036473} a^{17} + \frac{1}{896994} a^{15} + \frac{53}{8072946} a^{13} + \frac{22}{192213} a^{11} - \frac{1}{4746} a^{9} - \frac{16}{7119} a^{7} + \frac{50}{1017} a^{5} - \frac{53}{339} a^{3} + \frac{7}{113} a$, $\frac{1}{636701674415436} a^{22} + \frac{1}{182331521883} a^{20} - \frac{494063}{70744630490604} a^{18} - \frac{93010}{842197982031} a^{16} - \frac{152879}{80209331622} a^{14} - \frac{5314}{93577553559} a^{12} - \frac{9847}{91877814} a^{10} + \frac{551}{13144761} a^{8} + \frac{16454}{70731333} a^{6} - \frac{320524}{7859037} a^{4} + \frac{603289}{7859037} a^{2} + \frac{727670}{2619679}$, $\frac{1}{636701674415436} a^{23} + \frac{1}{182331521883} a^{21} - \frac{494063}{70744630490604} a^{19} - \frac{93010}{842197982031} a^{17} - \frac{152879}{80209331622} a^{15} - \frac{5314}{93577553559} a^{13} - \frac{9847}{91877814} a^{11} + \frac{551}{13144761} a^{9} + \frac{16454}{70731333} a^{7} - \frac{320524}{7859037} a^{5} + \frac{603289}{7859037} a^{3} + \frac{727670}{2619679} a$
Class group and class number
Not computed
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{16})^+\), 6.6.1229312.1, 8.0.417644767346688.52, 12.12.49519263525896192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $24$ | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |