Normalized defining polynomial
\( x^{24} - x^{23} + 23 x^{22} - 19 x^{21} + 226 x^{20} - 150 x^{19} + 1248 x^{18} - 648 x^{17} + 4301 x^{16} - 1709 x^{15} + 9699 x^{14} - 2863 x^{13} + 14455 x^{12} - 2482 x^{11} + 13614 x^{10} + 3087 x^{9} + 5663 x^{8} + 15854 x^{7} - 1326 x^{6} + 19186 x^{5} - 869 x^{4} + 18947 x^{3} - 13105 x^{2} - 15272 x + 67861 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(416724332309376501938461264338134765625=3^{12}\cdot 5^{12}\cdot 13^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(1,·)$, $\chi_{195}(194,·)$, $\chi_{195}(134,·)$, $\chi_{195}(71,·)$, $\chi_{195}(74,·)$, $\chi_{195}(11,·)$, $\chi_{195}(14,·)$, $\chi_{195}(16,·)$, $\chi_{195}(19,·)$, $\chi_{195}(86,·)$, $\chi_{195}(154,·)$, $\chi_{195}(29,·)$, $\chi_{195}(161,·)$, $\chi_{195}(34,·)$, $\chi_{195}(166,·)$, $\chi_{195}(41,·)$, $\chi_{195}(109,·)$, $\chi_{195}(176,·)$, $\chi_{195}(179,·)$, $\chi_{195}(181,·)$, $\chi_{195}(184,·)$, $\chi_{195}(121,·)$, $\chi_{195}(124,·)$, $\chi_{195}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{233} a^{13} + \frac{13}{233} a^{11} + \frac{65}{233} a^{9} - \frac{77}{233} a^{7} - \frac{51}{233} a^{5} + \frac{91}{233} a^{3} + \frac{13}{233} a - \frac{89}{233}$, $\frac{1}{233} a^{14} + \frac{13}{233} a^{12} + \frac{65}{233} a^{10} - \frac{77}{233} a^{8} - \frac{51}{233} a^{6} + \frac{91}{233} a^{4} + \frac{13}{233} a^{2} - \frac{89}{233} a$, $\frac{1}{233} a^{15} - \frac{104}{233} a^{11} + \frac{10}{233} a^{9} + \frac{18}{233} a^{7} + \frac{55}{233} a^{5} - \frac{5}{233} a^{3} - \frac{89}{233} a^{2} + \frac{64}{233} a - \frac{8}{233}$, $\frac{1}{233} a^{16} - \frac{104}{233} a^{12} + \frac{10}{233} a^{10} + \frac{18}{233} a^{8} + \frac{55}{233} a^{6} - \frac{5}{233} a^{4} - \frac{89}{233} a^{3} + \frac{64}{233} a^{2} - \frac{8}{233} a$, $\frac{1}{233} a^{17} - \frac{36}{233} a^{11} + \frac{21}{233} a^{9} - \frac{31}{233} a^{7} + \frac{50}{233} a^{5} - \frac{89}{233} a^{4} - \frac{25}{233} a^{3} - \frac{8}{233} a^{2} - \frac{46}{233} a + \frac{64}{233}$, $\frac{1}{466} a^{18} - \frac{1}{466} a^{15} - \frac{1}{466} a^{14} - \frac{1}{466} a^{13} - \frac{49}{466} a^{12} - \frac{71}{233} a^{11} + \frac{189}{466} a^{10} + \frac{79}{233} a^{9} + \frac{23}{233} a^{8} + \frac{59}{466} a^{7} + \frac{101}{466} a^{6} - \frac{93}{466} a^{5} + \frac{117}{466} a^{4} + \frac{139}{466} a^{3} + \frac{15}{233} a^{2} - \frac{157}{466} a + \frac{97}{466}$, $\frac{1}{63245986} a^{19} + \frac{32561}{63245986} a^{18} + \frac{51427}{31622993} a^{17} - \frac{125263}{63245986} a^{16} + \frac{57531}{31622993} a^{15} - \frac{29786}{31622993} a^{14} + \frac{47032}{31622993} a^{13} + \frac{10108411}{63245986} a^{12} + \frac{13054653}{63245986} a^{11} + \frac{9990991}{63245986} a^{10} + \frac{9945876}{31622993} a^{9} - \frac{30310093}{63245986} a^{8} - \frac{6537833}{31622993} a^{7} - \frac{7460683}{31622993} a^{6} + \frac{10272698}{31622993} a^{5} - \frac{7976936}{31622993} a^{4} - \frac{6641993}{63245986} a^{3} + \frac{29993617}{63245986} a^{2} - \frac{3862333}{31622993} a - \frac{6973611}{63245986}$, $\frac{1}{63245986} a^{20} + \frac{432}{31622993} a^{18} - \frac{102961}{63245986} a^{17} + \frac{116113}{63245986} a^{16} - \frac{15149}{63245986} a^{15} - \frac{42297}{63245986} a^{14} + \frac{31480}{31622993} a^{13} - \frac{12041341}{63245986} a^{12} + \frac{4138862}{31622993} a^{11} - \frac{13026613}{31622993} a^{10} - \frac{2874747}{63245986} a^{9} - \frac{21019525}{63245986} a^{8} - \frac{24031047}{63245986} a^{7} - \frac{16215353}{63245986} a^{6} - \frac{25376865}{63245986} a^{5} + \frac{13439846}{31622993} a^{4} + \frac{20778093}{63245986} a^{3} + \frac{20328291}{63245986} a^{2} - \frac{11387528}{31622993} a + \frac{13640042}{31622993}$, $\frac{1}{63245986} a^{21} - \frac{5697}{63245986} a^{18} + \frac{11791}{63245986} a^{17} - \frac{93275}{63245986} a^{16} - \frac{108093}{63245986} a^{15} - \frac{20406}{31622993} a^{14} + \frac{63411}{63245986} a^{13} + \frac{14714723}{31622993} a^{12} - \frac{14107764}{31622993} a^{11} - \frac{18164681}{63245986} a^{10} + \frac{4643967}{63245986} a^{9} - \frac{11805639}{63245986} a^{8} + \frac{28803403}{63245986} a^{7} + \frac{10104471}{63245986} a^{6} + \frac{9503381}{31622993} a^{5} - \frac{27489377}{63245986} a^{4} + \frac{19369153}{63245986} a^{3} + \frac{4397434}{31622993} a^{2} - \frac{1070062}{31622993} a + \frac{3801103}{31622993}$, $\frac{1}{63245986} a^{22} - \frac{18799}{63245986} a^{18} + \frac{94127}{63245986} a^{17} - \frac{55193}{31622993} a^{16} + \frac{70693}{63245986} a^{15} + \frac{59974}{31622993} a^{14} + \frac{34089}{63245986} a^{13} + \frac{130780}{31622993} a^{12} + \frac{2707667}{31622993} a^{11} - \frac{24533301}{63245986} a^{10} + \frac{1299909}{63245986} a^{9} - \frac{49090}{31622993} a^{8} + \frac{4456641}{31622993} a^{7} + \frac{26669013}{63245986} a^{6} + \frac{3139277}{31622993} a^{5} + \frac{10917732}{31622993} a^{4} - \frac{11759444}{31622993} a^{3} - \frac{5857589}{63245986} a^{2} - \frac{13865385}{63245986} a + \frac{14113192}{31622993}$, $\frac{1}{63245986} a^{23} - \frac{29065}{63245986} a^{18} - \frac{19703}{31622993} a^{17} + \frac{5453}{31622993} a^{16} - \frac{86533}{63245986} a^{15} - \frac{12984}{31622993} a^{14} - \frac{9655}{63245986} a^{13} + \frac{7470208}{31622993} a^{12} - \frac{10954761}{31622993} a^{11} + \frac{8098335}{63245986} a^{10} + \frac{12453262}{31622993} a^{9} - \frac{13951759}{63245986} a^{8} + \frac{2416648}{31622993} a^{7} - \frac{21769537}{63245986} a^{6} + \frac{7019573}{63245986} a^{5} - \frac{2784619}{63245986} a^{4} - \frac{25857867}{63245986} a^{3} - \frac{505133}{31622993} a^{2} + \frac{22435407}{63245986} a + \frac{1325520}{31622993}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}\times C_{8}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5703268.037899434 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||