Normalized defining polynomial
\( x^{24} - x^{23} - 3 x^{22} + 4 x^{21} - 18 x^{20} - 73 x^{19} + 153 x^{18} + 160 x^{17} + 166 x^{16} + 640 x^{15} + 1363 x^{14} - 4490 x^{13} - 19199 x^{12} + 2486 x^{11} + 33907 x^{10} - 20248 x^{9} + 355120 x^{8} - 52357 x^{7} - 937497 x^{6} + 356623 x^{5} + 2830245 x^{4} + 91235 x^{3} - 10298763 x^{2} - 1431644 x + 25411681 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(397869767537058122019418033599853515625=5^{18}\cdot 7^{16}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(385=5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{385}(1,·)$, $\chi_{385}(67,·)$, $\chi_{385}(197,·)$, $\chi_{385}(263,·)$, $\chi_{385}(331,·)$, $\chi_{385}(142,·)$, $\chi_{385}(144,·)$, $\chi_{385}(274,·)$, $\chi_{385}(78,·)$, $\chi_{385}(23,·)$, $\chi_{385}(219,·)$, $\chi_{385}(221,·)$, $\chi_{385}(351,·)$, $\chi_{385}(32,·)$, $\chi_{385}(296,·)$, $\chi_{385}(298,·)$, $\chi_{385}(43,·)$, $\chi_{385}(109,·)$, $\chi_{385}(177,·)$, $\chi_{385}(309,·)$, $\chi_{385}(186,·)$, $\chi_{385}(232,·)$, $\chi_{385}(254,·)$, $\chi_{385}(373,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3613} a^{20} - \frac{317}{3613} a^{19} + \frac{313}{3613} a^{18} + \frac{952}{3613} a^{17} - \frac{1282}{3613} a^{16} + \frac{158}{3613} a^{15} + \frac{785}{3613} a^{14} - \frac{311}{3613} a^{13} + \frac{618}{3613} a^{12} - \frac{128}{3613} a^{11} - \frac{861}{3613} a^{10} - \frac{365}{3613} a^{9} + \frac{427}{3613} a^{8} + \frac{1646}{3613} a^{7} + \frac{1022}{3613} a^{6} + \frac{940}{3613} a^{5} - \frac{1780}{3613} a^{4} + \frac{331}{3613} a^{3} - \frac{1149}{3613} a^{2} + \frac{1471}{3613} a - \frac{1252}{3613}$, $\frac{1}{64642281770425802423948323} a^{21} + \frac{6659172969473172480059}{64642281770425802423948323} a^{20} - \frac{23989222710322829149828182}{64642281770425802423948323} a^{19} + \frac{23962586018444936459907943}{64642281770425802423948323} a^{18} + \frac{7332045533512158198016256}{64642281770425802423948323} a^{17} + \frac{22764866624337526933006448}{64642281770425802423948323} a^{16} + \frac{1835574915765425612290725}{64642281770425802423948323} a^{15} - \frac{28387657844918645174561490}{64642281770425802423948323} a^{14} - \frac{9982010982808952920837811}{64642281770425802423948323} a^{13} - \frac{10347141969337060882313068}{64642281770425802423948323} a^{12} + \frac{30786173780575110636770292}{64642281770425802423948323} a^{11} - \frac{4747446125137935364949509}{64642281770425802423948323} a^{10} + \frac{27577522539924421005720998}{64642281770425802423948323} a^{9} - \frac{7907253314766711630129137}{64642281770425802423948323} a^{8} + \frac{27720936632291735840285349}{64642281770425802423948323} a^{7} + \frac{21083520355399372241574807}{64642281770425802423948323} a^{6} - \frac{6253817891155890089266363}{64642281770425802423948323} a^{5} + \frac{9413141449171270334441011}{64642281770425802423948323} a^{4} + \frac{1687435765536293273728478}{64642281770425802423948323} a^{3} + \frac{12457445935211490300509464}{64642281770425802423948323} a^{2} + \frac{6403305178001195856741650}{64642281770425802423948323} a + \frac{152676607354917141133438}{910454672822898625689413}$, $\frac{1}{4589602005700231972100330933} a^{22} - \frac{1}{4589602005700231972100330933} a^{21} + \frac{413831657546074651623273}{4589602005700231972100330933} a^{20} - \frac{1488340520020369805870217048}{4589602005700231972100330933} a^{19} + \frac{1486685193390185507263723930}{4589602005700231972100330933} a^{18} - \frac{1750693235895871677337621218}{4589602005700231972100330933} a^{17} + \frac{256972904327402900996301658}{4589602005700231972100330933} a^{16} + \frac{2232186152636938845984781013}{4589602005700231972100330933} a^{15} - \frac{1074484856656681053191208057}{4589602005700231972100330933} a^{14} - \frac{407300654714681338325549882}{4589602005700231972100330933} a^{13} - \frac{1163282772324603252064547654}{4589602005700231972100330933} a^{12} + \frac{299441586176175108962988760}{4589602005700231972100330933} a^{11} + \frac{1415269072099929893287220407}{4589602005700231972100330933} a^{10} + \frac{2085014301701458941404158794}{4589602005700231972100330933} a^{9} + \frac{2037168364861767212100566313}{4589602005700231972100330933} a^{8} - \frac{985965734366747866763005303}{4589602005700231972100330933} a^{7} - \frac{602855264941926083052185338}{4589602005700231972100330933} a^{6} - \frac{1974322245923442424426551058}{4589602005700231972100330933} a^{5} + \frac{2208552239459340472527382136}{4589602005700231972100330933} a^{4} - \frac{764727896348726803026403471}{4589602005700231972100330933} a^{3} - \frac{484172898777394195735251223}{4589602005700231972100330933} a^{2} - \frac{27057676932754676729555618}{64642281770425802423948323} a + \frac{413294188241921375594593}{910454672822898625689413}$, $\frac{1}{325861742404716470019123496243} a^{23} - \frac{1}{325861742404716470019123496243} a^{22} - \frac{3}{325861742404716470019123496243} a^{21} + \frac{31607685723950243156130861}{325861742404716470019123496243} a^{20} + \frac{72966145604710280302071348294}{325861742404716470019123496243} a^{19} + \frac{131812987286990062272319455528}{325861742404716470019123496243} a^{18} - \frac{97910650358286564190949745024}{325861742404716470019123496243} a^{17} + \frac{2567126319633857182177075630}{325861742404716470019123496243} a^{16} + \frac{133700783788606810711729129799}{325861742404716470019123496243} a^{15} + \frac{111997074500123485280486941399}{325861742404716470019123496243} a^{14} + \frac{145422266734707097847187246748}{325861742404716470019123496243} a^{13} + \frac{65674939232659076634488426130}{325861742404716470019123496243} a^{12} + \frac{125539256190056374209139615236}{325861742404716470019123496243} a^{11} - \frac{4687718802992311392765402174}{325861742404716470019123496243} a^{10} - \frac{56917512240132346996891651519}{325861742404716470019123496243} a^{9} + \frac{81206153618439790315199531505}{325861742404716470019123496243} a^{8} - \frac{55737149452600363080323445930}{325861742404716470019123496243} a^{7} + \frac{86319085182458855621136161227}{325861742404716470019123496243} a^{6} - \frac{10536895808838485136014967714}{325861742404716470019123496243} a^{5} + \frac{87951694099341683234724662130}{325861742404716470019123496243} a^{4} + \frac{17044707620467656315188507702}{325861742404716470019123496243} a^{3} + \frac{1256658120298293149018972120}{4589602005700231972100330933} a^{2} - \frac{17477595102529108032687843}{64642281770425802423948323} a - \frac{293816029118185767398099}{910454672822898625689413}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18832211760643333}{1270302243481935226155641} a^{23} + \frac{8434654599732333}{1270302243481935226155641} a^{22} - \frac{12987732248719540}{1270302243481935226155641} a^{21} + \frac{21429758210387241}{1270302243481935226155641} a^{20} - \frac{466908974341467463}{1270302243481935226155641} a^{19} - \frac{1237081496690536185}{1270302243481935226155641} a^{18} - \frac{1165945463726580736}{1270302243481935226155641} a^{17} + \frac{44807676258082413}{1270302243481935226155641} a^{16} + \frac{10596041355117836709}{1270302243481935226155641} a^{15} + \frac{19860840154741920568}{1270302243481935226155641} a^{14} + \frac{34984404971763388921}{1270302243481935226155641} a^{13} + \frac{204605395172600545975}{1270302243481935226155641} a^{12} - \frac{310379526506674694966}{1270302243481935226155641} a^{11} - \frac{210071374030139071684}{1270302243481935226155641} a^{10} - \frac{240196418981044044714}{1270302243481935226155641} a^{9} - \frac{178618982843414961666}{1270302243481935226155641} a^{8} - \frac{1068665174153916664171}{1270302243481935226155641} a^{7} - \frac{997120805049806399937}{1270302243481935226155641} a^{6} - \frac{19969287719018728727}{17891580894111763748671} a^{5} + \frac{1866812475141301033164}{1270302243481935226155641} a^{4} + \frac{154950139593348471970}{17891580894111763748671} a^{3} + \frac{492027212572704163428682}{1270302243481935226155641} a^{2} - \frac{12540954259363587824}{251994097100165686601} a - \frac{9820673739869280171}{251994097100165686601} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 486434529.8152184 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |