Properties

Label 24.0.38522626068...9072.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{24}\cdot 7^{16}\cdot 17^{21}$
Root discriminant $87.31$
Ramified primes $2, 7, 17$
Class number $46948$ (GRH)
Class group $[22, 2134]$ (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![23918117, -59364186, 84874236, -40286724, 13976710, 4655532, 1868535, -7777136, 7658667, -5646172, 4113398, -3016984, 2076162, -1171240, 584017, -270256, 124148, -49630, 17865, -5348, 1456, -310, 63, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^23 + 63*x^22 - 310*x^21 + 1456*x^20 - 5348*x^19 + 17865*x^18 - 49630*x^17 + 124148*x^16 - 270256*x^15 + 584017*x^14 - 1171240*x^13 + 2076162*x^12 - 3016984*x^11 + 4113398*x^10 - 5646172*x^9 + 7658667*x^8 - 7777136*x^7 + 1868535*x^6 + 4655532*x^5 + 13976710*x^4 - 40286724*x^3 + 84874236*x^2 - 59364186*x + 23918117)
 
gp: K = bnfinit(x^24 - 8*x^23 + 63*x^22 - 310*x^21 + 1456*x^20 - 5348*x^19 + 17865*x^18 - 49630*x^17 + 124148*x^16 - 270256*x^15 + 584017*x^14 - 1171240*x^13 + 2076162*x^12 - 3016984*x^11 + 4113398*x^10 - 5646172*x^9 + 7658667*x^8 - 7777136*x^7 + 1868535*x^6 + 4655532*x^5 + 13976710*x^4 - 40286724*x^3 + 84874236*x^2 - 59364186*x + 23918117, 1)
 

Normalized defining polynomial

\( x^{24} - 8 x^{23} + 63 x^{22} - 310 x^{21} + 1456 x^{20} - 5348 x^{19} + 17865 x^{18} - 49630 x^{17} + 124148 x^{16} - 270256 x^{15} + 584017 x^{14} - 1171240 x^{13} + 2076162 x^{12} - 3016984 x^{11} + 4113398 x^{10} - 5646172 x^{9} + 7658667 x^{8} - 7777136 x^{7} + 1868535 x^{6} + 4655532 x^{5} + 13976710 x^{4} - 40286724 x^{3} + 84874236 x^{2} - 59364186 x + 23918117 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(38522626068874714759052304357183694398210179072=2^{24}\cdot 7^{16}\cdot 17^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $87.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(476=2^{2}\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{476}(1,·)$, $\chi_{476}(263,·)$, $\chi_{476}(137,·)$, $\chi_{476}(331,·)$, $\chi_{476}(205,·)$, $\chi_{476}(15,·)$, $\chi_{476}(81,·)$, $\chi_{476}(149,·)$, $\chi_{476}(151,·)$, $\chi_{476}(155,·)$, $\chi_{476}(225,·)$, $\chi_{476}(291,·)$, $\chi_{476}(421,·)$, $\chi_{476}(359,·)$, $\chi_{476}(169,·)$, $\chi_{476}(43,·)$, $\chi_{476}(429,·)$, $\chi_{476}(305,·)$, $\chi_{476}(179,·)$, $\chi_{476}(373,·)$, $\chi_{476}(219,·)$, $\chi_{476}(361,·)$, $\chi_{476}(127,·)$, $\chi_{476}(247,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{52} a^{18} - \frac{3}{26} a^{17} + \frac{7}{52} a^{16} - \frac{5}{26} a^{15} + \frac{1}{52} a^{14} - \frac{9}{26} a^{13} - \frac{9}{52} a^{12} - \frac{9}{26} a^{11} - \frac{3}{26} a^{10} - \frac{1}{26} a^{9} - \frac{5}{52} a^{8} - \frac{3}{26} a^{7} - \frac{15}{52} a^{6} - \frac{3}{13} a^{5} - \frac{25}{52} a^{4} - \frac{6}{13} a^{3} + \frac{1}{52} a^{2} + \frac{11}{26} a + \frac{17}{52}$, $\frac{1}{52} a^{19} + \frac{23}{52} a^{17} - \frac{5}{13} a^{16} - \frac{7}{52} a^{15} - \frac{3}{13} a^{14} - \frac{1}{4} a^{13} - \frac{5}{13} a^{12} - \frac{5}{26} a^{11} + \frac{7}{26} a^{10} - \frac{17}{52} a^{9} + \frac{4}{13} a^{8} + \frac{1}{52} a^{7} + \frac{1}{26} a^{6} + \frac{7}{52} a^{5} - \frac{9}{26} a^{4} + \frac{1}{4} a^{3} - \frac{6}{13} a^{2} - \frac{7}{52} a - \frac{1}{26}$, $\frac{1}{52} a^{20} + \frac{7}{26} a^{17} - \frac{3}{13} a^{16} + \frac{5}{26} a^{15} + \frac{4}{13} a^{14} - \frac{11}{26} a^{13} - \frac{11}{52} a^{12} + \frac{3}{13} a^{11} + \frac{17}{52} a^{10} + \frac{5}{26} a^{9} + \frac{3}{13} a^{8} - \frac{4}{13} a^{7} - \frac{3}{13} a^{6} - \frac{1}{26} a^{5} + \frac{4}{13} a^{4} + \frac{2}{13} a^{3} + \frac{11}{26} a^{2} + \frac{3}{13} a + \frac{25}{52}$, $\frac{1}{52} a^{21} + \frac{5}{13} a^{17} + \frac{4}{13} a^{16} + \frac{4}{13} a^{14} - \frac{19}{52} a^{13} - \frac{9}{26} a^{12} + \frac{9}{52} a^{11} - \frac{5}{26} a^{10} - \frac{3}{13} a^{9} + \frac{1}{26} a^{8} + \frac{5}{13} a^{7} - \frac{6}{13} a^{5} - \frac{3}{26} a^{4} - \frac{3}{26} a^{3} - \frac{1}{26} a^{2} - \frac{23}{52} a + \frac{11}{26}$, $\frac{1}{88164596448712662443112078934570979396} a^{22} - \frac{8612300778624798411782166962737821}{88164596448712662443112078934570979396} a^{21} - \frac{116682664323007183016383802588911047}{44082298224356331221556039467285489698} a^{20} + \frac{149718410608407699970508829666275685}{44082298224356331221556039467285489698} a^{19} - \frac{59195623357864541070782848145320857}{44082298224356331221556039467285489698} a^{18} + \frac{10546307702923446253408508309983389021}{44082298224356331221556039467285489698} a^{17} + \frac{9415889116232021594482641188153675447}{44082298224356331221556039467285489698} a^{16} - \frac{16419954400906894856922067535082718125}{44082298224356331221556039467285489698} a^{15} - \frac{19008853153405254966931666237327393689}{88164596448712662443112078934570979396} a^{14} - \frac{23287643208290890030244721860000873}{88164596448712662443112078934570979396} a^{13} - \frac{574353859860578606967055992968333485}{6781892034516358649470159918043921492} a^{12} - \frac{24859950818718270888170884990947282243}{88164596448712662443112078934570979396} a^{11} - \frac{10125988724970067489249202867590246715}{22041149112178165610778019733642744849} a^{10} - \frac{6421440042896415755373342258232019074}{22041149112178165610778019733642744849} a^{9} + \frac{8826366061262609364795537851896046082}{22041149112178165610778019733642744849} a^{8} + \frac{7842457267831021413155920917661829073}{44082298224356331221556039467285489698} a^{7} - \frac{17152505491682062274122944321622957405}{44082298224356331221556039467285489698} a^{6} - \frac{3886666933272278652684202010037983780}{22041149112178165610778019733642744849} a^{5} + \frac{10809090227025585477605679856806991157}{44082298224356331221556039467285489698} a^{4} + \frac{17360540097907711936357966994338877685}{44082298224356331221556039467285489698} a^{3} + \frac{3012837280207684589026942160224416381}{6781892034516358649470159918043921492} a^{2} + \frac{4507755281879417681151086263876164659}{88164596448712662443112078934570979396} a - \frac{384216543979417438594820106708278353}{44082298224356331221556039467285489698}$, $\frac{1}{10496005287942713630122407474718918517178819365492948} a^{23} - \frac{27092453521}{10280122711011472703352015156433808537883270681188} a^{22} - \frac{5830628467346524773459834787560796873415973555999}{10496005287942713630122407474718918517178819365492948} a^{21} - \frac{51053416909448088522034065190678525901476379475905}{10496005287942713630122407474718918517178819365492948} a^{20} - \frac{27451757686119987610701270655820620516303313367583}{10496005287942713630122407474718918517178819365492948} a^{19} - \frac{42560249069635504444088595101440216987392348139649}{10496005287942713630122407474718918517178819365492948} a^{18} - \frac{43610510424857070353466243876063015937419633135233}{10496005287942713630122407474718918517178819365492948} a^{17} - \frac{841369619551344420140748460247633747937538845082179}{10496005287942713630122407474718918517178819365492948} a^{16} - \frac{2413634624820185956154420218501452755549030433316545}{5248002643971356815061203737359459258589409682746474} a^{15} - \frac{281706508065580986336170802026326442569283146952272}{2624001321985678407530601868679729629294704841373237} a^{14} - \frac{4041583035627568205618789173252806123421100943252497}{10496005287942713630122407474718918517178819365492948} a^{13} + \frac{2224566372585839037364559107136590270162123331834179}{10496005287942713630122407474718918517178819365492948} a^{12} + \frac{2759409176708591086076380914055589334432516048064455}{10496005287942713630122407474718918517178819365492948} a^{11} - \frac{5026573005804151435360772302685927319884770118349753}{10496005287942713630122407474718918517178819365492948} a^{10} - \frac{1117366841743698411569271012396005130442820331151423}{10496005287942713630122407474718918517178819365492948} a^{9} - \frac{3478712606597178890089102417666366896564721703870245}{10496005287942713630122407474718918517178819365492948} a^{8} - \frac{1628050160708380073353841199359259112330715219991969}{10496005287942713630122407474718918517178819365492948} a^{7} - \frac{222439299643148616721016098240622410806414662818409}{10496005287942713630122407474718918517178819365492948} a^{6} + \frac{44734209917542732863542985342207047302846791423561}{10496005287942713630122407474718918517178819365492948} a^{5} - \frac{3546765600297735393235370871376267565020660122963083}{10496005287942713630122407474718918517178819365492948} a^{4} - \frac{1688670962121869071534810311941844768483697343932339}{5248002643971356815061203737359459258589409682746474} a^{3} + \frac{985797170325234795864697771716261421267548984352130}{2624001321985678407530601868679729629294704841373237} a^{2} + \frac{484506476590659402600440639348139816805775726396741}{5248002643971356815061203737359459258589409682746474} a - \frac{1466351559468202130142215592069333089139188645742703}{5248002643971356815061203737359459258589409682746474}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{22}\times C_{2134}$, which has order $46948$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 250243842.68845215 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.4913.1, 6.6.11796113.1, 8.0.105046700288.1, 12.12.683635509017782097.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $24$ $24$ R $24$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ R ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ $24$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ $24$ $24$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
7Data not computed
17Data not computed