/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^24 - 6*x^23 + 18*x^22 - 32*x^21 + 30*x^20 + 4*x^19 - 62*x^18 + 110*x^17 - 118*x^16 + 44*x^15 + 206*x^14 - 696*x^13 + 1249*x^12 - 1392*x^11 + 824*x^10 + 352*x^9 - 1888*x^8 + 3520*x^7 - 3968*x^6 + 512*x^5 + 7680*x^4 - 16384*x^3 + 18432*x^2 - 12288*x + 4096, 24, 400, [0, 12], 3785323726785214561740247642669056, [2, 3, 23, 79], [1, a, a^2, a^3, a^4, a^5, a^6, 1/2*a^7 - 1/2*a, 1/2*a^8 - 1/2*a^2, 1/2*a^9 - 1/2*a^3, 1/2*a^10 - 1/2*a^4, 1/2*a^11 - 1/2*a^5, 1/2*a^12 - 1/2*a^6, 1/2*a^13 - 1/2*a, 1/4*a^14 - 1/4*a^2, 1/8*a^15 - 1/4*a^13 - 1/4*a^11 - 1/4*a^9 - 1/4*a^8 - 1/4*a^7 - 1/2*a^6 - 1/4*a^5 - 1/2*a^4 - 3/8*a^3 + 1/4*a^2, 1/16*a^16 - 1/8*a^14 - 1/4*a^13 - 1/8*a^12 + 1/8*a^10 + 1/8*a^9 - 1/8*a^8 + 3/8*a^6 + 1/4*a^5 - 7/16*a^4 - 1/8*a^3 - 1/2*a^2 - 1/2*a, 1/32*a^17 - 1/16*a^15 - 1/8*a^14 - 1/16*a^13 - 1/4*a^12 - 3/16*a^11 - 3/16*a^10 - 1/16*a^9 - 1/4*a^8 + 3/16*a^7 - 1/8*a^6 - 15/32*a^5 - 5/16*a^4 + 1/4*a^3 - 1/2*a^2 - 1/2*a, 1/128*a^18 - 1/64*a^17 + 1/64*a^16 - 1/16*a^15 + 7/64*a^14 - 1/32*a^13 + 1/64*a^12 + 11/64*a^11 + 9/64*a^10 + 1/32*a^9 + 7/64*a^8 - 1/4*a^7 - 15/128*a^6 - 11/32*a^5 - 1/2*a^4 - 1/2*a^2 - 1/2*a - 1/2, 1/256*a^19 - 1/128*a^17 - 1/64*a^16 - 1/128*a^15 + 3/32*a^14 + 29/128*a^13 + 13/128*a^12 + 31/128*a^11 - 3/32*a^10 + 11/128*a^9 + 15/64*a^8 - 15/256*a^7 + 27/128*a^6 - 3/32*a^5 - 1/4*a^4 + 1/4*a^3 + 1/4*a - 1/2, 1/512*a^20 - 1/256*a^18 - 1/128*a^17 - 1/256*a^16 + 3/64*a^15 + 29/256*a^14 + 13/256*a^13 + 31/256*a^12 - 3/64*a^11 - 53/256*a^10 - 17/128*a^9 + 113/512*a^8 + 27/256*a^7 + 29/64*a^6 - 1/8*a^5 - 1/8*a^4 + 1/4*a^3 + 3/8*a^2 - 1/4*a, 1/1024*a^21 - 1/512*a^19 - 1/256*a^18 - 1/512*a^17 + 3/128*a^16 + 29/512*a^15 + 13/512*a^14 - 97/512*a^13 - 3/128*a^12 - 53/512*a^11 + 47/256*a^10 - 143/1024*a^9 + 27/512*a^8 - 3/128*a^7 - 1/16*a^6 - 1/16*a^5 + 3/8*a^4 + 7/16*a^3 + 3/8*a^2 - 1/2*a, 1/698368*a^22 - 19/87296*a^21 - 149/349184*a^20 + 3/15872*a^19 - 457/349184*a^18 + 1303/87296*a^17 + 9909/349184*a^16 - 19427/349184*a^15 + 41407/349184*a^14 - 21185/87296*a^13 + 41291/349184*a^12 + 31567/174592*a^11 - 129119/698368*a^10 + 41255/349184*a^9 - 8379/43648*a^8 + 16749/87296*a^7 - 2307/43648*a^6 + 5309/10912*a^5 - 3533/10912*a^4 + 179/496*a^3 - 149/682*a^2 + 37/1364*a - 339/682, 1/101961728*a^23 - 19/50980864*a^22 - 20407/50980864*a^21 - 8663/12745216*a^20 + 5703/50980864*a^19 + 14749/25490432*a^18 - 49279/50980864*a^17 - 311089/50980864*a^16 - 2436523/50980864*a^15 + 2629503/25490432*a^14 - 8141857/50980864*a^13 + 279379/12745216*a^12 - 23858367/101961728*a^11 + 168327/3186304*a^10 + 29709/1158656*a^9 + 1579081/12745216*a^8 - 73361/796576*a^7 - 813111/3186304*a^6 - 451997/1593152*a^5 + 41535/199144*a^4 + 4910/24893*a^3 + 2309/18104*a^2 + 8456/24893*a - 9093/49786], 1, 4, [4], 1, [ (40555)/(12745216)*a^(23) - (194089)/(4634624)*a^(22) + (3607173)/(25490432)*a^(21) - (6490327)/(25490432)*a^(20) + (1331661)/(6372608)*a^(19) + (3178139)/(25490432)*a^(18) - (6992917)/(12745216)*a^(17) + (20594913)/(25490432)*a^(16) - (19040545)/(25490432)*a^(15) + (7047529)/(25490432)*a^(14) + (1854399)/(1158656)*a^(13) - (13116367)/(2317312)*a^(12) + (121459677)/(12745216)*a^(11) - (475431371)/(50980864)*a^(10) + (5046705)/(1593152)*a^(9) + (15123755)/(3186304)*a^(8) - (45993421)/(3186304)*a^(7) + (61003)/(2263)*a^(6) - (23637937)/(796576)*a^(5) - (1282907)/(796576)*a^(4) + (1822977)/(24893)*a^(3) - (12850479)/(99572)*a^(2) + (2920321)/(24893)*a - (40477)/(803) , (1183995)/(101961728)*a^(23) - (736389)/(12745216)*a^(22) + (6502739)/(50980864)*a^(21) - (3432733)/(25490432)*a^(20) - (710583)/(50980864)*a^(19) + (3380715)/(12745216)*a^(18) - (21172733)/(50980864)*a^(17) + (1827197)/(4634624)*a^(16) - (12706615)/(50980864)*a^(15) - (2756029)/(6372608)*a^(14) + (120877685)/(50980864)*a^(13) - (3969677)/(822272)*a^(12) + (537366099)/(101961728)*a^(11) - (118703131)/(50980864)*a^(10) - (51054143)/(25490432)*a^(9) + (38509689)/(6372608)*a^(8) - (79204525)/(6372608)*a^(7) + (27888699)/(1593152)*a^(6) - (881355)/(144832)*a^(5) - (24212777)/(796576)*a^(4) + (26848109)/(398288)*a^(3) - (6629661)/(99572)*a^(2) + (2896475)/(99572)*a + (49987)/(24893) , (1348585)/(101961728)*a^(23) - (2446053)/(50980864)*a^(22) + (328157)/(4634624)*a^(21) - (60867)/(6372608)*a^(20) - (7506013)/(50980864)*a^(19) + (6005075)/(25490432)*a^(18) - (8664083)/(50980864)*a^(17) + (499859)/(50980864)*a^(16) + (7208565)/(50980864)*a^(15) - (1685371)/(2317312)*a^(14) + (102714715)/(50980864)*a^(13) - (7805121)/(3186304)*a^(12) + (71380865)/(101961728)*a^(11) + (67525839)/(25490432)*a^(10) - (102588561)/(25490432)*a^(9) + (29325991)/(6372608)*a^(8) - (44216279)/(6372608)*a^(7) + (237007)/(51392)*a^(6) + (17589027)/(1593152)*a^(5) - (1798383)/(49786)*a^(4) + (14538257)/(398288)*a^(3) - (104279)/(24893)*a^(2) - (3165559)/(99572)*a + (739364)/(24893) , (232585)/(101961728)*a^(23) - (1292087)/(50980864)*a^(22) + (4067353)/(50980864)*a^(21) - (1702265)/(12745216)*a^(20) + (4257423)/(50980864)*a^(19) + (2735185)/(25490432)*a^(18) - (1427637)/(4634624)*a^(17) + (20088399)/(50980864)*a^(16) - (17115083)/(50980864)*a^(15) + (2180811)/(25490432)*a^(14) + (53476295)/(50980864)*a^(13) - (40795775)/(12745216)*a^(12) + (45822587)/(9269248)*a^(11) - (4787149)/(1158656)*a^(10) + (8701519)/(12745216)*a^(9) + (37999765)/(12745216)*a^(8) - (25547041)/(3186304)*a^(7) + (45418589)/(3186304)*a^(6) - (22703305)/(1593152)*a^(5) - (2618027)/(398288)*a^(4) + (1089147)/(24893)*a^(3) - (13044697)/(199144)*a^(2) + (116945)/(2263)*a - (851467)/(49786) , (19365)/(4634624)*a^(23) - (76957)/(2317312)*a^(22) + (117057)/(1158656)*a^(21) - (24043)/(144832)*a^(20) + (263637)/(2317312)*a^(19) + (124817)/(1158656)*a^(18) - (879949)/(2317312)*a^(17) + (1196407)/(2317312)*a^(16) - (1081097)/(2317312)*a^(15) + (47953)/(579328)*a^(14) + (3015721)/(2317312)*a^(13) - (1139815)/(289664)*a^(12) + (28950785)/(4634624)*a^(11) - (6472553)/(1158656)*a^(10) + (3734453)/(2317312)*a^(9) + (4267497)/(1158656)*a^(8) - (5878797)/(579328)*a^(7) + (40654)/(2263)*a^(6) - (1286975)/(72416)*a^(5) - (56615)/(9052)*a^(4) + (1852855)/(36208)*a^(3) - (1509913)/(18104)*a^(2) + (640699)/(9052)*a - (2094)/(73) , (280105)/(50980864)*a^(23) - (26529)/(1158656)*a^(22) + (39707)/(796576)*a^(21) - (607095)/(12745216)*a^(20) - (391463)/(25490432)*a^(19) + (617075)/(6372608)*a^(18) - (4016549)/(25490432)*a^(17) + (3647009)/(25490432)*a^(16) - (2370099)/(25490432)*a^(15) - (2648779)/(12745216)*a^(14) + (2260955)/(2317312)*a^(13) - (2069073)/(1158656)*a^(12) + (97468229)/(50980864)*a^(11) - (17545159)/(25490432)*a^(10) - (17302447)/(25490432)*a^(9) + (31680903)/(12745216)*a^(8) - (31497419)/(6372608)*a^(7) + (914577)/(144832)*a^(6) - (1135293)/(796576)*a^(5) - (5173177)/(398288)*a^(4) + (9610619)/(398288)*a^(3) - (4769203)/(199144)*a^(2) + (1007673)/(99572)*a + (1596)/(803) , (27641)/(822272)*a^(23) - (141289)/(822272)*a^(22) + (32183)/(74752)*a^(21) - (117829)/(205568)*a^(20) + (46019)/(205568)*a^(19) + (266221)/(411136)*a^(18) - (310417)/(205568)*a^(17) + (371527)/(205568)*a^(16) - (596139)/(411136)*a^(15) - (13235)/(18688)*a^(14) + (1416911)/(205568)*a^(13) - (6795015)/(411136)*a^(12) + (18355527)/(822272)*a^(11) - (13583083)/(822272)*a^(10) + (793049)/(822272)*a^(9) + (958475)/(51392)*a^(8) - (8910423)/(205568)*a^(7) + (6918189)/(102784)*a^(6) - (1196509)/(25696)*a^(5) - (202471)/(3212)*a^(4) + (2828743)/(12848)*a^(3) - (235871)/(803)*a^(2) + (683527)/(3212)*a - (113777)/(1606) , (2378969)/(101961728)*a^(23) - (5732669)/(50980864)*a^(22) + (13710447)/(50980864)*a^(21) - (2280053)/(6372608)*a^(20) + (7182291)/(50980864)*a^(19) + (10003179)/(25490432)*a^(18) - (47868835)/(50980864)*a^(17) + (60130451)/(50980864)*a^(16) - (4310625)/(4634624)*a^(15) - (12614801)/(25490432)*a^(14) + (225838571)/(50980864)*a^(13) - (8253467)/(796576)*a^(12) + (1433502129)/(101961728)*a^(11) - (274917653)/(25490432)*a^(10) + (29386871)/(25490432)*a^(9) + (74729483)/(6372608)*a^(8) - (179139903)/(6372608)*a^(7) + (67002473)/(1593152)*a^(6) - (45806791)/(1593152)*a^(5) - (15325435)/(398288)*a^(4) + (54302393)/(398288)*a^(3) - (18347093)/(99572)*a^(2) + (14071291)/(99572)*a - (1343283)/(24893) , (378493)/(50980864)*a^(23) - (708155)/(50980864)*a^(22) - (390581)/(25490432)*a^(21) + (2653055)/(25490432)*a^(20) - (4455371)/(25490432)*a^(19) + (2123571)/(25490432)*a^(18) + (3615957)/(25490432)*a^(17) - (4073257)/(12745216)*a^(16) + (209265)/(579328)*a^(15) - (14886389)/(25490432)*a^(14) + (14822391)/(25490432)*a^(13) + (22364553)/(25490432)*a^(12) - (186572791)/(50980864)*a^(11) + (269448027)/(50980864)*a^(10) - (83685341)/(25490432)*a^(9) + (8982729)/(12745216)*a^(8) + (1207689)/(796576)*a^(7) - (12793463)/(1593152)*a^(6) + (15992247)/(796576)*a^(5) - (16437583)/(796576)*a^(4) - (4159901)/(398288)*a^(3) + (10579645)/(199144)*a^(2) - (1640168)/(24893)*a + (774657)/(24893) , (106389)/(25490432)*a^(23) - (14793)/(6372608)*a^(22) - (708369)/(25490432)*a^(21) + (524097)/(6372608)*a^(20) - (762797)/(6372608)*a^(19) + (182803)/(6372608)*a^(18) + (9715)/(72416)*a^(17) - (3131175)/(12745216)*a^(16) + (1047901)/(3186304)*a^(15) - (134061)/(411136)*a^(14) + (864099)/(6372608)*a^(13) + (7679099)/(6372608)*a^(12) - (6985247)/(2317312)*a^(11) + (4462553)/(1158656)*a^(10) - (62497527)/(25490432)*a^(9) - (1997381)/(12745216)*a^(8) + (1768435)/(796576)*a^(7) - (6795073)/(796576)*a^(6) + (667031)/(49786)*a^(5) - (4257589)/(398288)*a^(4) - (5283199)/(398288)*a^(3) + (8720531)/(199144)*a^(2) - (103384)/(2263)*a + (741428)/(24893) , (70913)/(6372608)*a^(23) - (55139)/(579328)*a^(22) + (971233)/(3186304)*a^(21) - (6501467)/(12745216)*a^(20) + (284147)/(796576)*a^(19) + (2194959)/(6372608)*a^(18) - (938445)/(796576)*a^(17) + (9912043)/(6372608)*a^(16) - (2186161)/(1593152)*a^(15) + (1935499)/(6372608)*a^(14) + (2210717)/(579328)*a^(13) - (6984273)/(579328)*a^(12) + (122442217)/(6372608)*a^(11) - (27049067)/(1593152)*a^(10) + (828093)/(199144)*a^(9) + (144850641)/(12745216)*a^(8) - (192034719)/(6372608)*a^(7) + (15801233)/(289664)*a^(6) - (22248047)/(398288)*a^(5) - (452720)/(24893)*a^(4) + (31889207)/(199144)*a^(3) - (51292273)/(199144)*a^(2) + (21227917)/(99572)*a - (125519)/(1606) ], 42401055.974884115, [[x^2 + 1, 1], [x^2 - x + 1, 1], [x^2 - 3, 1], [x^3 - x^2 - 4*x + 2, 1], [x^4 - x^2 + 1, 1], [x^6 - x^5 + 2*x^4 - 2*x^3 + 4*x^2 - 4*x + 8, 1], [x^6 - 2*x^5 + 3*x^4 - 6*x^3 + 6*x^2 - 8*x + 8, 1], [x^6 - x^5 + 5*x^4 + 18*x^2 - 8*x + 4, 1], [x^6 + 13*x^4 - 16*x^3 + 64*x^2 - 152*x + 172, 1], [x^6 - 9*x^4 - 6*x^3 + 15*x^2 + 14*x + 2, 1], [x^6 - x^5 - 13*x^4 + 12*x^3 + 42*x^2 - 32*x - 8, 1], [x^6 - 11*x^4 - 4*x^3 + 31*x^2 + 22*x - 2, 1], [x^12 - 19*x^10 - 8*x^9 + 106*x^8 + 64*x^7 - 219*x^6 - 156*x^5 + 146*x^4 + 100*x^3 - 27*x^2 - 12*x + 1, 1], [x^12 - 6*x^11 + 18*x^10 - 32*x^9 + 39*x^8 - 28*x^7 + 13*x^6 + 10*x^5 + 6*x^4 + 14*x^3 + 17*x^2 + 10*x + 2, 1], [x^12 + 9*x^10 - 12*x^9 + 66*x^8 - 68*x^7 + 175*x^6 - 162*x^5 + 327*x^4 - 234*x^3 + 166*x^2 - 28*x + 4, 1], [x^12 - x^11 - x^10 + 2*x^9 - 2*x^8 + 8*x^6 - 8*x^4 + 16*x^3 - 16*x^2 - 32*x + 64, 1], [x^12 + 27*x^10 + 277*x^8 + 1316*x^6 + 2740*x^4 + 1696*x^2 + 64, 1], [x^12 - 2*x^11 + x^10 + 6*x^9 - 9*x^8 - 2*x^7 + 18*x^6 - 4*x^5 - 36*x^4 + 48*x^3 + 16*x^2 - 64*x + 64, 1], [x^12 - 6*x^11 + 24*x^10 - 64*x^9 + 151*x^8 - 242*x^7 + 239*x^6 - 104*x^5 + 224*x^4 - 240*x^3 + 117*x^2 - 16*x + 4, 1]]]