Properties

Label 24.0.37680832395...5696.2
Degree $24$
Signature $[0, 12]$
Discriminant $2^{72}\cdot 7^{20}$
Root discriminant $40.49$
Ramified primes $2, 7$
Class number $52$ (GRH)
Class group $[2, 26]$ (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2401, 0, 0, 0, 0, 0, 0, 0, 7546, 0, 0, 0, 0, 0, 0, 0, 245, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 245*x^16 + 7546*x^8 + 2401)
 
gp: K = bnfinit(x^24 + 245*x^16 + 7546*x^8 + 2401, 1)
 

Normalized defining polynomial

\( x^{24} + 245 x^{16} + 7546 x^{8} + 2401 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(376808323956052112639025409344139165696=2^{72}\cdot 7^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(112=2^{4}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{112}(1,·)$, $\chi_{112}(3,·)$, $\chi_{112}(5,·)$, $\chi_{112}(65,·)$, $\chi_{112}(9,·)$, $\chi_{112}(79,·)$, $\chi_{112}(75,·)$, $\chi_{112}(13,·)$, $\chi_{112}(15,·)$, $\chi_{112}(81,·)$, $\chi_{112}(19,·)$, $\chi_{112}(23,·)$, $\chi_{112}(25,·)$, $\chi_{112}(27,·)$, $\chi_{112}(69,·)$, $\chi_{112}(101,·)$, $\chi_{112}(39,·)$, $\chi_{112}(95,·)$, $\chi_{112}(71,·)$, $\chi_{112}(45,·)$, $\chi_{112}(83,·)$, $\chi_{112}(57,·)$, $\chi_{112}(59,·)$, $\chi_{112}(61,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{7} a^{9}$, $\frac{1}{7} a^{10}$, $\frac{1}{7} a^{11}$, $\frac{1}{49} a^{12}$, $\frac{1}{49} a^{13}$, $\frac{1}{49} a^{14}$, $\frac{1}{49} a^{15}$, $\frac{1}{26117} a^{16} + \frac{254}{3731} a^{8} - \frac{185}{533}$, $\frac{1}{26117} a^{17} + \frac{254}{3731} a^{9} - \frac{185}{533} a$, $\frac{1}{182819} a^{18} - \frac{116}{3731} a^{10} + \frac{202}{533} a^{2}$, $\frac{1}{182819} a^{19} - \frac{116}{3731} a^{11} + \frac{202}{533} a^{3}$, $\frac{1}{182819} a^{20} + \frac{254}{26117} a^{12} + \frac{202}{533} a^{4}$, $\frac{1}{182819} a^{21} + \frac{254}{26117} a^{13} + \frac{202}{533} a^{5}$, $\frac{1}{182819} a^{22} + \frac{254}{26117} a^{14} - \frac{185}{3731} a^{6}$, $\frac{1}{182819} a^{23} + \frac{254}{26117} a^{15} - \frac{185}{3731} a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{26}$, which has order $52$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{8}{26117} a^{22} + \frac{1965}{26117} a^{14} + \frac{8828}{3731} a^{6} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 215040822.68029645 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{12}$ (as 24T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{8})\), 4.4.100352.1, 4.0.100352.5, 6.0.153664.1, 6.6.1229312.1, 6.0.1229312.1, 8.0.40282095616.2, 12.0.96717311574016.1, 12.12.2426443912768913408.1, 12.0.2426443912768913408.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}$ R ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{24}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$
7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$