Properties

Label 24.0.37680832395...5696.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{72}\cdot 7^{20}$
Root discriminant $40.49$
Ramified primes $2, 7$
Class number $468$ (GRH)
Class group $[6, 78]$ (GRH)
Galois group $C_2\times C_{12}$ (as 24T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 96, 0, 1400, 0, 7344, 0, 18646, 0, 27104, 0, 24648, 0, 14672, 0, 5813, 0, 1520, 0, 252, 0, 24, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 24*x^22 + 252*x^20 + 1520*x^18 + 5813*x^16 + 14672*x^14 + 24648*x^12 + 27104*x^10 + 18646*x^8 + 7344*x^6 + 1400*x^4 + 96*x^2 + 1)
 
gp: K = bnfinit(x^24 + 24*x^22 + 252*x^20 + 1520*x^18 + 5813*x^16 + 14672*x^14 + 24648*x^12 + 27104*x^10 + 18646*x^8 + 7344*x^6 + 1400*x^4 + 96*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{24} + 24 x^{22} + 252 x^{20} + 1520 x^{18} + 5813 x^{16} + 14672 x^{14} + 24648 x^{12} + 27104 x^{10} + 18646 x^{8} + 7344 x^{6} + 1400 x^{4} + 96 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(376808323956052112639025409344139165696=2^{72}\cdot 7^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(112=2^{4}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{112}(1,·)$, $\chi_{112}(67,·)$, $\chi_{112}(5,·)$, $\chi_{112}(65,·)$, $\chi_{112}(9,·)$, $\chi_{112}(11,·)$, $\chi_{112}(13,·)$, $\chi_{112}(81,·)$, $\chi_{112}(107,·)$, $\chi_{112}(87,·)$, $\chi_{112}(25,·)$, $\chi_{112}(111,·)$, $\chi_{112}(69,·)$, $\chi_{112}(31,·)$, $\chi_{112}(99,·)$, $\chi_{112}(101,·)$, $\chi_{112}(103,·)$, $\chi_{112}(43,·)$, $\chi_{112}(45,·)$, $\chi_{112}(47,·)$, $\chi_{112}(51,·)$, $\chi_{112}(55,·)$, $\chi_{112}(57,·)$, $\chi_{112}(61,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}\times C_{78}$, which has order $468$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7024849.183363979 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{12}$ (as 24T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2\times C_{12}$
Character table for $C_2\times C_{12}$ is not computed

Intermediate fields

\(\Q(\sqrt{14}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{7})\), 4.0.2048.2, 4.0.100352.5, 6.6.8605184.1, 6.6.1229312.1, \(\Q(\zeta_{28})^+\), 8.0.40282095616.1, \(\Q(\zeta_{56})^+\), 12.0.49519263525896192.1, 12.0.2426443912768913408.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}$ R ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$