Normalized defining polynomial
\( x^{24} - 9 x^{18} + 17 x^{12} - 576 x^{6} + 4096 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34854715807867200628629234134286336=2^{24}\cdot 3^{36}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(252=2^{2}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{252}(1,·)$, $\chi_{252}(197,·)$, $\chi_{252}(71,·)$, $\chi_{252}(139,·)$, $\chi_{252}(13,·)$, $\chi_{252}(209,·)$, $\chi_{252}(211,·)$, $\chi_{252}(85,·)$, $\chi_{252}(155,·)$, $\chi_{252}(29,·)$, $\chi_{252}(223,·)$, $\chi_{252}(97,·)$, $\chi_{252}(167,·)$, $\chi_{252}(169,·)$, $\chi_{252}(41,·)$, $\chi_{252}(43,·)$, $\chi_{252}(239,·)$, $\chi_{252}(113,·)$, $\chi_{252}(83,·)$, $\chi_{252}(181,·)$, $\chi_{252}(55,·)$, $\chi_{252}(251,·)$, $\chi_{252}(125,·)$, $\chi_{252}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{6} - \frac{1}{5}$, $\frac{1}{10} a^{13} + \frac{3}{10} a^{7} - \frac{1}{10} a$, $\frac{1}{20} a^{14} + \frac{3}{20} a^{8} + \frac{9}{20} a^{2}$, $\frac{1}{40} a^{15} - \frac{17}{40} a^{9} + \frac{9}{40} a^{3}$, $\frac{1}{80} a^{16} + \frac{23}{80} a^{10} - \frac{31}{80} a^{4}$, $\frac{1}{160} a^{17} + \frac{23}{160} a^{11} + \frac{49}{160} a^{5}$, $\frac{1}{5440} a^{18} + \frac{7}{320} a^{12} + \frac{1}{320} a^{6} - \frac{9}{85}$, $\frac{1}{10880} a^{19} + \frac{7}{640} a^{13} + \frac{1}{640} a^{7} - \frac{9}{170} a$, $\frac{1}{21760} a^{20} + \frac{7}{1280} a^{14} - \frac{639}{1280} a^{8} + \frac{161}{340} a^{2}$, $\frac{1}{43520} a^{21} + \frac{7}{2560} a^{15} - \frac{639}{2560} a^{9} + \frac{161}{680} a^{3}$, $\frac{1}{87040} a^{22} + \frac{7}{5120} a^{16} + \frac{1921}{5120} a^{10} - \frac{519}{1360} a^{4}$, $\frac{1}{174080} a^{23} + \frac{7}{10240} a^{17} - \frac{3199}{10240} a^{11} - \frac{519}{2720} a^{5}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{10880} a^{19} + \frac{7}{640} a^{13} + \frac{1}{640} a^{7} - \frac{9}{170} a \) (order $36$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 79907554.2564404 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ | |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |