Normalized defining polynomial
\( x^{24} - x^{23} - 4 x^{22} + x^{21} + x^{20} - 5 x^{19} + 37 x^{18} + 33 x^{17} - 39 x^{16} - 57 x^{15} - 111 x^{14} - 16 x^{13} + 118 x^{12} + 13 x^{11} + 47 x^{9} + 156 x^{8} + 319 x^{7} + 175 x^{6} - 76 x^{5} - 127 x^{4} - 44 x^{3} + 48 x^{2} + 56 x + 16 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(34430548576629947662353515625\)\(\medspace = 3^{12}\cdot 5^{18}\cdot 19^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $15.45$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 5, 19$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $12$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{1425556} a^{22} + \frac{41357}{1425556} a^{21} - \frac{15043}{712778} a^{20} - \frac{196965}{1425556} a^{19} - \frac{317161}{1425556} a^{18} + \frac{60521}{1425556} a^{17} + \frac{44291}{129596} a^{16} + \frac{682817}{1425556} a^{15} - \frac{353827}{1425556} a^{14} - \frac{55911}{1425556} a^{13} - \frac{519895}{1425556} a^{12} + \frac{135136}{356389} a^{11} + \frac{219189}{712778} a^{10} - \frac{51293}{129596} a^{9} + \frac{324799}{712778} a^{8} - \frac{18529}{1425556} a^{7} + \frac{3869}{32399} a^{6} - \frac{365647}{1425556} a^{5} + \frac{165805}{1425556} a^{4} + \frac{274965}{712778} a^{3} - \frac{405607}{1425556} a^{2} - \frac{29541}{356389} a + \frac{46623}{356389}$, $\frac{1}{85703606366693128} a^{23} + \frac{18163868979}{85703606366693128} a^{22} + \frac{1048338166402372}{10712950795836641} a^{21} + \frac{15906265505534113}{85703606366693128} a^{20} + \frac{12743854618137629}{85703606366693128} a^{19} - \frac{878378445445419}{7791236942426648} a^{18} + \frac{7913804544221361}{85703606366693128} a^{17} - \frac{28970327234607371}{85703606366693128} a^{16} + \frac{23854512785139669}{85703606366693128} a^{15} + \frac{36354610084564603}{85703606366693128} a^{14} + \frac{3661253358170429}{85703606366693128} a^{13} + \frac{906506742036311}{21425901591673282} a^{12} - \frac{3819911632942621}{42851803183346564} a^{11} - \frac{29553639811128595}{85703606366693128} a^{10} + \frac{2650181397954751}{21425901591673282} a^{9} + \frac{7273315788756047}{85703606366693128} a^{8} + \frac{5059110145331208}{10712950795836641} a^{7} + \frac{28804495284019239}{85703606366693128} a^{6} - \frac{1322431666416461}{85703606366693128} a^{5} + \frac{3976816316270953}{10712950795836641} a^{4} + \frac{27951577922856681}{85703606366693128} a^{3} + \frac{2755054537062789}{10712950795836641} a^{2} - \frac{3158720930017212}{10712950795836641} a + \frac{2636870551896277}{10712950795836641}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{117915814377341653}{42851803183346564} a^{23} + \frac{197207171645330503}{42851803183346564} a^{22} + \frac{85006782973489926}{10712950795836641} a^{21} - \frac{348478004387897971}{42851803183346564} a^{20} + \frac{113679103893968149}{42851803183346564} a^{19} + \frac{518245734125825657}{42851803183346564} a^{18} - \frac{4713653758914993037}{42851803183346564} a^{17} - \frac{727035149700994613}{42851803183346564} a^{16} + \frac{5129588610391762855}{42851803183346564} a^{15} + \frac{3265932441257164717}{42851803183346564} a^{14} + \frac{10829050500302674923}{42851803183346564} a^{13} - \frac{1346668237222617290}{10712950795836641} a^{12} - \frac{2592770900643767350}{10712950795836641} a^{11} + \frac{5523067453432221815}{42851803183346564} a^{10} - \frac{1809883378337436571}{21425901591673282} a^{9} - \frac{17747524028759473}{236750293830644} a^{8} - \frac{8086893335090639107}{21425901591673282} a^{7} - \frac{26743766156315915693}{42851803183346564} a^{6} - \frac{2551875730292042513}{42851803183346564} a^{5} + \frac{2704264347260549967}{10712950795836641} a^{4} + \frac{691362455020807511}{3895618471213324} a^{3} - \frac{25998071151352511}{21425901591673282} a^{2} - \frac{258156184163192927}{1947809235606662} a - \frac{691973979704513672}{10712950795836641} \) (order $30$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 242614.53860678803 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_{12}\times S_3$ (as 24T65):
A solvable group of order 72 |
The 36 conjugacy class representatives for $C_{12}\times S_3$ |
Character table for $C_{12}\times S_3$ is not computed |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{5})\), \(\Q(\zeta_{15})^+\), \(\Q(\sqrt{-3}, \sqrt{5})\), 6.0.1218375.1, \(\Q(\zeta_{15})\), 12.0.1484437640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 36 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{3}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
3 | Data not computed | ||||||
5 | Data not computed | ||||||
$19$ | 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
19.6.4.1 | $x^{6} + 57 x^{3} + 1444$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
19.6.4.1 | $x^{6} + 57 x^{3} + 1444$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.15.2t1.a.a | $1$ | $ 3 \cdot 5 $ | \(\Q(\sqrt{-15}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.285.6t1.a.a | $1$ | $ 3 \cdot 5 \cdot 19 $ | 6.0.439833375.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.95.6t1.a.a | $1$ | $ 5 \cdot 19 $ | 6.6.16290125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.57.6t1.a.a | $1$ | $ 3 \cdot 19 $ | 6.0.3518667.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.19.3t1.a.a | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.95.6t1.a.b | $1$ | $ 5 \cdot 19 $ | 6.6.16290125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.19.3t1.a.b | $1$ | $ 19 $ | 3.3.361.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.285.6t1.a.b | $1$ | $ 3 \cdot 5 \cdot 19 $ | 6.0.439833375.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.57.6t1.a.b | $1$ | $ 3 \cdot 19 $ | 6.0.3518667.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
* | 1.15.4t1.a.a | $1$ | $ 3 \cdot 5 $ | \(\Q(\zeta_{15})^+\) | $C_4$ (as 4T1) | $0$ | $1$ |
* | 1.5.4t1.a.a | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
* | 1.5.4t1.a.b | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
* | 1.15.4t1.a.b | $1$ | $ 3 \cdot 5 $ | \(\Q(\zeta_{15})^+\) | $C_4$ (as 4T1) | $0$ | $1$ |
1.95.12t1.a.a | $1$ | $ 5 \cdot 19 $ | 12.0.33171021564453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.95.12t1.a.b | $1$ | $ 5 \cdot 19 $ | 12.0.33171021564453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.95.12t1.a.c | $1$ | $ 5 \cdot 19 $ | 12.0.33171021564453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.95.12t1.a.d | $1$ | $ 5 \cdot 19 $ | 12.0.33171021564453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.285.12t1.a.a | $1$ | $ 3 \cdot 5 \cdot 19 $ | 12.12.24181674720486328125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
1.285.12t1.a.b | $1$ | $ 3 \cdot 5 \cdot 19 $ | 12.12.24181674720486328125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
1.285.12t1.a.c | $1$ | $ 3 \cdot 5 \cdot 19 $ | 12.12.24181674720486328125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
1.285.12t1.a.d | $1$ | $ 3 \cdot 5 \cdot 19 $ | 12.12.24181674720486328125.1 | $C_{12}$ (as 12T1) | $0$ | $1$ | |
2.5415.3t2.a.a | $2$ | $ 3 \cdot 5 \cdot 19^{2}$ | 3.1.5415.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.5415.6t3.d.a | $2$ | $ 3 \cdot 5 \cdot 19^{2}$ | 6.2.146611125.1 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.285.6t5.c.a | $2$ | $ 3 \cdot 5 \cdot 19 $ | 6.0.1218375.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.285.12t18.a.a | $2$ | $ 3 \cdot 5 \cdot 19 $ | 12.0.1484437640625.1 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |
* | 2.285.12t18.a.b | $2$ | $ 3 \cdot 5 \cdot 19 $ | 12.0.1484437640625.1 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |
* | 2.285.6t5.c.b | $2$ | $ 3 \cdot 5 \cdot 19 $ | 6.0.1218375.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
2.27075.12t11.b.a | $2$ | $ 3 \cdot 5^{2} \cdot 19^{2}$ | 12.4.24181674720486328125.1 | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ | |
2.27075.12t11.b.b | $2$ | $ 3 \cdot 5^{2} \cdot 19^{2}$ | 12.4.24181674720486328125.1 | $S_3 \times C_4$ (as 12T11) | $0$ | $0$ | |
* | 2.1425.24t65.a.a | $2$ | $ 3 \cdot 5^{2} \cdot 19 $ | 24.0.34430548576629947662353515625.1 | $C_{12}\times S_3$ (as 24T65) | $0$ | $0$ |
* | 2.1425.24t65.a.b | $2$ | $ 3 \cdot 5^{2} \cdot 19 $ | 24.0.34430548576629947662353515625.1 | $C_{12}\times S_3$ (as 24T65) | $0$ | $0$ |
* | 2.1425.24t65.a.c | $2$ | $ 3 \cdot 5^{2} \cdot 19 $ | 24.0.34430548576629947662353515625.1 | $C_{12}\times S_3$ (as 24T65) | $0$ | $0$ |
* | 2.1425.24t65.a.d | $2$ | $ 3 \cdot 5^{2} \cdot 19 $ | 24.0.34430548576629947662353515625.1 | $C_{12}\times S_3$ (as 24T65) | $0$ | $0$ |