Normalized defining polynomial
\( x^{24} - 7 x^{22} + 40 x^{20} - 217 x^{18} + 1159 x^{16} - 6160 x^{14} + 32689 x^{12} - 55440 x^{10} + 93879 x^{8} - 158193 x^{6} + 262440 x^{4} - 413343 x^{2} + 531441 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31188962191164288779371841230414544896=2^{24}\cdot 7^{20}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(364=2^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{364}(1,·)$, $\chi_{364}(131,·)$, $\chi_{364}(261,·)$, $\chi_{364}(129,·)$, $\chi_{364}(103,·)$, $\chi_{364}(183,·)$, $\chi_{364}(207,·)$, $\chi_{364}(79,·)$, $\chi_{364}(209,·)$, $\chi_{364}(339,·)$, $\chi_{364}(25,·)$, $\chi_{364}(27,·)$, $\chi_{364}(285,·)$, $\chi_{364}(155,·)$, $\chi_{364}(363,·)$, $\chi_{364}(337,·)$, $\chi_{364}(233,·)$, $\chi_{364}(235,·)$, $\chi_{364}(157,·)$, $\chi_{364}(51,·)$, $\chi_{364}(53,·)$, $\chi_{364}(311,·)$, $\chi_{364}(313,·)$, $\chi_{364}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{294201} a^{14} + \frac{2}{9} a^{12} + \frac{4}{9} a^{10} - \frac{1}{9} a^{8} - \frac{2}{9} a^{6} - \frac{4}{9} a^{4} + \frac{1}{9} a^{2} - \frac{6160}{32689}$, $\frac{1}{882603} a^{15} + \frac{2}{27} a^{13} + \frac{4}{27} a^{11} + \frac{8}{27} a^{9} - \frac{11}{27} a^{7} + \frac{5}{27} a^{5} + \frac{10}{27} a^{3} - \frac{38849}{98067} a$, $\frac{1}{2647809} a^{16} + \frac{2}{2647809} a^{14} + \frac{40}{81} a^{12} + \frac{26}{81} a^{10} + \frac{25}{81} a^{8} - \frac{4}{81} a^{6} - \frac{35}{81} a^{4} + \frac{8843}{98067} a^{2} - \frac{5001}{32689}$, $\frac{1}{7943427} a^{17} + \frac{2}{7943427} a^{15} + \frac{40}{243} a^{13} + \frac{26}{243} a^{11} - \frac{56}{243} a^{9} - \frac{85}{243} a^{7} - \frac{116}{243} a^{5} + \frac{8843}{294201} a^{3} - \frac{1667}{32689} a$, $\frac{1}{23830281} a^{18} + \frac{2}{23830281} a^{16} - \frac{23}{23830281} a^{14} + \frac{269}{729} a^{12} - \frac{56}{729} a^{10} + \frac{158}{729} a^{8} + \frac{127}{729} a^{6} + \frac{8843}{882603} a^{4} - \frac{1667}{98067} a^{2} + \frac{942}{32689}$, $\frac{1}{71490843} a^{19} + \frac{2}{71490843} a^{17} - \frac{23}{71490843} a^{15} + \frac{269}{2187} a^{13} - \frac{56}{2187} a^{11} + \frac{158}{2187} a^{9} - \frac{602}{2187} a^{7} - \frac{873760}{2647809} a^{5} + \frac{96400}{294201} a^{3} - \frac{31747}{98067} a$, $\frac{1}{214472529} a^{20} + \frac{2}{214472529} a^{18} - \frac{23}{214472529} a^{16} + \frac{143}{214472529} a^{14} - \frac{785}{6561} a^{12} + \frac{3074}{6561} a^{10} - \frac{1331}{6561} a^{8} + \frac{8843}{7943427} a^{6} - \frac{1667}{882603} a^{4} + \frac{314}{98067} a^{2} - \frac{177}{32689}$, $\frac{1}{643417587} a^{21} + \frac{2}{643417587} a^{19} - \frac{23}{643417587} a^{17} + \frac{143}{643417587} a^{15} - \frac{785}{19683} a^{13} - \frac{3487}{19683} a^{11} - \frac{7892}{19683} a^{9} - \frac{7934584}{23830281} a^{7} + \frac{880936}{2647809} a^{5} - \frac{97753}{294201} a^{3} + \frac{32512}{98067} a$, $\frac{1}{1930252761} a^{22} + \frac{2}{1930252761} a^{20} - \frac{23}{1930252761} a^{18} + \frac{143}{1930252761} a^{16} - \frac{794}{1930252761} a^{14} + \frac{22757}{59049} a^{12} + \frac{24913}{59049} a^{10} + \frac{8843}{71490843} a^{8} - \frac{1667}{7943427} a^{6} + \frac{314}{882603} a^{4} - \frac{59}{98067} a^{2} + \frac{33}{32689}$, $\frac{1}{5790758283} a^{23} + \frac{2}{5790758283} a^{21} - \frac{23}{5790758283} a^{19} + \frac{143}{5790758283} a^{17} - \frac{794}{5790758283} a^{15} + \frac{22757}{177147} a^{13} + \frac{83962}{177147} a^{11} + \frac{71499686}{214472529} a^{9} - \frac{7945094}{23830281} a^{7} + \frac{882917}{2647809} a^{5} - \frac{98126}{294201} a^{3} + \frac{32722}{98067} a$
Class group and class number
$C_{4}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{18781}{5790758283} a^{23} - \frac{107320}{5790758283} a^{21} + \frac{582211}{5790758283} a^{19} - \frac{3109597}{5790758283} a^{17} + \frac{16527280}{5790758283} a^{15} - \frac{2683}{177147} a^{13} + \frac{14209}{177147} a^{11} - \frac{3109597}{71490843} a^{9} + \frac{582211}{7943427} a^{7} - \frac{107320}{882603} a^{5} + \frac{18781}{98067} a^{3} - \frac{8049}{32689} a \) (order $28$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 268691479.40790963 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |