Normalized defining polynomial
\( x^{24} + 13 x^{22} + 104 x^{20} + 533 x^{18} + 2015 x^{16} + 5499 x^{14} + 11349 x^{12} + 16731 x^{10} + 18083 x^{8} + 12506 x^{6} + 5915 x^{4} + 1183 x^{2} + 169 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28637078059459331679625147758321598464=2^{24}\cdot 3^{12}\cdot 13^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(156=2^{2}\cdot 3\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{156}(1,·)$, $\chi_{156}(67,·)$, $\chi_{156}(133,·)$, $\chi_{156}(7,·)$, $\chi_{156}(11,·)$, $\chi_{156}(77,·)$, $\chi_{156}(115,·)$, $\chi_{156}(17,·)$, $\chi_{156}(19,·)$, $\chi_{156}(151,·)$, $\chi_{156}(25,·)$, $\chi_{156}(29,·)$, $\chi_{156}(31,·)$, $\chi_{156}(101,·)$, $\chi_{156}(113,·)$, $\chi_{156}(71,·)$, $\chi_{156}(47,·)$, $\chi_{156}(49,·)$, $\chi_{156}(83,·)$, $\chi_{156}(53,·)$, $\chi_{156}(119,·)$, $\chi_{156}(121,·)$, $\chi_{156}(59,·)$, $\chi_{156}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12}$, $\frac{1}{13} a^{13}$, $\frac{1}{13} a^{14}$, $\frac{1}{13} a^{15}$, $\frac{1}{13} a^{16}$, $\frac{1}{13} a^{17}$, $\frac{1}{13} a^{18}$, $\frac{1}{13} a^{19}$, $\frac{1}{6695} a^{20} + \frac{121}{6695} a^{18} + \frac{89}{6695} a^{16} - \frac{88}{6695} a^{14} - \frac{251}{6695} a^{12} - \frac{35}{103} a^{10} - \frac{106}{515} a^{8} - \frac{26}{515} a^{6} + \frac{31}{515} a^{4} - \frac{67}{515} a^{2} + \frac{161}{515}$, $\frac{1}{6695} a^{21} + \frac{121}{6695} a^{19} + \frac{89}{6695} a^{17} - \frac{88}{6695} a^{15} - \frac{251}{6695} a^{13} - \frac{35}{103} a^{11} - \frac{106}{515} a^{9} - \frac{26}{515} a^{7} + \frac{31}{515} a^{5} - \frac{67}{515} a^{3} + \frac{161}{515} a$, $\frac{1}{2473273595} a^{22} + \frac{7758}{190251815} a^{20} - \frac{4002321}{190251815} a^{18} - \frac{5779922}{190251815} a^{16} + \frac{1117145}{38050363} a^{14} - \frac{3352671}{190251815} a^{12} - \frac{5497556}{190251815} a^{10} - \frac{2275763}{14634755} a^{8} + \frac{3088396}{14634755} a^{6} - \frac{5535798}{14634755} a^{4} - \frac{388110}{2926951} a^{2} - \frac{6915369}{14634755}$, $\frac{1}{2473273595} a^{23} + \frac{7758}{190251815} a^{21} - \frac{4002321}{190251815} a^{19} - \frac{5779922}{190251815} a^{17} + \frac{1117145}{38050363} a^{15} - \frac{3352671}{190251815} a^{13} - \frac{5497556}{190251815} a^{11} - \frac{2275763}{14634755} a^{9} + \frac{3088396}{14634755} a^{7} - \frac{5535798}{14634755} a^{5} - \frac{388110}{2926951} a^{3} - \frac{6915369}{14634755} a$
Class group and class number
$C_{2}\times C_{52}$, which has order $104$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{838684}{494654719} a^{22} - \frac{4095549}{190251815} a^{20} - \frac{32345379}{190251815} a^{18} - \frac{12507737}{14634755} a^{16} - \frac{604368468}{190251815} a^{14} - \frac{1608302916}{190251815} a^{12} - \frac{647438924}{38050363} a^{10} - \frac{352051821}{14634755} a^{8} - \frac{366180111}{14634755} a^{6} - \frac{230910889}{14634755} a^{4} - \frac{113228487}{14634755} a^{2} - \frac{7855309}{14634755} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14479835.771174202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |