Normalized defining polynomial
\( x^{24} - 8 x^{23} + 4 x^{22} + 160 x^{21} - 366 x^{20} - 2096 x^{19} + 9424 x^{18} + 9272 x^{17} - 118313 x^{16} + 93936 x^{15} + 920836 x^{14} - 2216152 x^{13} - 3301798 x^{12} + 19850880 x^{11} - 10729860 x^{10} - 91920960 x^{9} + 196565146 x^{8} + 95850552 x^{7} - 925083908 x^{6} + 1169190712 x^{5} + 838300088 x^{4} - 4404732392 x^{3} + 6039046872 x^{2} - 4045865776 x + 1138840609 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2856585398747452538819699104507633428089224036352=2^{93}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(608=2^{5}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{608}(1,·)$, $\chi_{608}(83,·)$, $\chi_{608}(387,·)$, $\chi_{608}(577,·)$, $\chi_{608}(457,·)$, $\chi_{608}(11,·)$, $\chi_{608}(467,·)$, $\chi_{608}(273,·)$, $\chi_{608}(163,·)$, $\chi_{608}(121,·)$, $\chi_{608}(267,·)$, $\chi_{608}(153,·)$, $\chi_{608}(539,·)$, $\chi_{608}(315,·)$, $\chi_{608}(353,·)$, $\chi_{608}(419,·)$, $\chi_{608}(49,·)$, $\chi_{608}(425,·)$, $\chi_{608}(235,·)$, $\chi_{608}(305,·)$, $\chi_{608}(115,·)$, $\chi_{608}(201,·)$, $\chi_{608}(505,·)$, $\chi_{608}(571,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{920445997538978261837721103444957309121} a^{22} - \frac{279557130770158442496448828050375949480}{920445997538978261837721103444957309121} a^{21} - \frac{248711855781743237350321221781614195431}{920445997538978261837721103444957309121} a^{20} - \frac{291766615249841137646487180394652645000}{920445997538978261837721103444957309121} a^{19} + \frac{89571593269292740221350900999369190128}{920445997538978261837721103444957309121} a^{18} + \frac{151100600387780592579348260544982764244}{920445997538978261837721103444957309121} a^{17} + \frac{25897215210283783829084711471893896757}{920445997538978261837721103444957309121} a^{16} - \frac{353200381885714261078664272223900381696}{920445997538978261837721103444957309121} a^{15} + \frac{412027861167978884835850761717315100821}{920445997538978261837721103444957309121} a^{14} + \frac{192075284128264334467031344549764412569}{920445997538978261837721103444957309121} a^{13} + \frac{422416943184853603353902430582828480159}{920445997538978261837721103444957309121} a^{12} + \frac{398985685861379335285434517346275466495}{920445997538978261837721103444957309121} a^{11} + \frac{107674390112330677314266075429191862225}{920445997538978261837721103444957309121} a^{10} + \frac{404250755015107920501741369249416518687}{920445997538978261837721103444957309121} a^{9} - \frac{138406523116063088086127191401809005233}{920445997538978261837721103444957309121} a^{8} - \frac{350090532789783380310141441737601949302}{920445997538978261837721103444957309121} a^{7} + \frac{205399521700908337050170596029422021611}{920445997538978261837721103444957309121} a^{6} + \frac{66408984968863443909659360193697261451}{920445997538978261837721103444957309121} a^{5} + \frac{419411106837624071250377491535792487577}{920445997538978261837721103444957309121} a^{4} + \frac{76745056199194256116657108683905417085}{920445997538978261837721103444957309121} a^{3} + \frac{43424172260423861924930038996399949366}{920445997538978261837721103444957309121} a^{2} + \frac{314243747426297722693723371173234390114}{920445997538978261837721103444957309121} a + \frac{447995544257802888758817952231702434691}{920445997538978261837721103444957309121}$, $\frac{1}{336114459345037244610513984526968374982033701786963009} a^{23} + \frac{1687639168967}{336114459345037244610513984526968374982033701786963009} a^{22} + \frac{79640952453945975174950678849577586341912044861682957}{336114459345037244610513984526968374982033701786963009} a^{21} - \frac{89652712147129823107432030022608196366490841266643}{582520726767828846811982642161123700142172793391617} a^{20} - \frac{30749735081547582374514807657698401053895630933373850}{336114459345037244610513984526968374982033701786963009} a^{19} - \frac{143125618472440757803557860085847151852264606366073486}{336114459345037244610513984526968374982033701786963009} a^{18} - \frac{25317686696378682921928510117435274113518709224518069}{336114459345037244610513984526968374982033701786963009} a^{17} - \frac{21722738862237902327020787131608834686700191070334523}{336114459345037244610513984526968374982033701786963009} a^{16} - \frac{43880489046395486064878982736736765507709024001337871}{336114459345037244610513984526968374982033701786963009} a^{15} + \frac{9325574830536348198611522494397819123523333125218788}{336114459345037244610513984526968374982033701786963009} a^{14} - \frac{93022564983163649151021765326131653804241128404956342}{336114459345037244610513984526968374982033701786963009} a^{13} + \frac{27451380947572702991265965084504982655104887137261646}{336114459345037244610513984526968374982033701786963009} a^{12} + \frac{132369102293419914925797602852718412353577747867728247}{336114459345037244610513984526968374982033701786963009} a^{11} + \frac{96705914615124525933967707915266503200851187179189886}{336114459345037244610513984526968374982033701786963009} a^{10} - \frac{65349849272477234119879960564201218270351467510594391}{336114459345037244610513984526968374982033701786963009} a^{9} - \frac{157296657642508542834710655445284131759823100273382318}{336114459345037244610513984526968374982033701786963009} a^{8} + \frac{73457172022849619886164091084537178339443656044041166}{336114459345037244610513984526968374982033701786963009} a^{7} + \frac{81551322142467120919196344583499637790413647715498275}{336114459345037244610513984526968374982033701786963009} a^{6} - \frac{58991207513641245798258310042948185581617388261882330}{336114459345037244610513984526968374982033701786963009} a^{5} + \frac{67937669355163300605776200869516539596212153418903520}{336114459345037244610513984526968374982033701786963009} a^{4} + \frac{5185427437288057562501730405549342647571469088849836}{336114459345037244610513984526968374982033701786963009} a^{3} - \frac{91292465984182004661595141091359510413922874594148612}{336114459345037244610513984526968374982033701786963009} a^{2} - \frac{128472044018647699961928334568199358249063360340565865}{336114459345037244610513984526968374982033701786963009} a + \frac{121913783591843819288138813969034749020680203155783133}{336114459345037244610513984526968374982033701786963009}$
Class group and class number
$C_{42121}$, which has order $42121$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2829344790.959167 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.361.1, \(\Q(\zeta_{16})^+\), 6.6.66724352.1, 8.0.2147483648.1, 12.12.145887695661298614272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $24$ | $24$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{3}$ | $24$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||