Normalized defining polynomial
\( x^{24} - x^{23} + 17 x^{22} - 6 x^{21} + 188 x^{20} - 47 x^{19} + 1066 x^{18} + 111 x^{17} + 4083 x^{16} + 396 x^{15} + 8622 x^{14} + 1407 x^{13} + 12820 x^{12} + 2029 x^{11} + 11865 x^{10} + 2619 x^{9} + 7679 x^{8} + 1542 x^{7} + 2678 x^{6} + 721 x^{5} + 616 x^{4} + 85 x^{3} + 36 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2465824451534772200819297422119140625=3^{12}\cdot 5^{12}\cdot 13^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(64,·)$, $\chi_{195}(1,·)$, $\chi_{195}(194,·)$, $\chi_{195}(131,·)$, $\chi_{195}(4,·)$, $\chi_{195}(134,·)$, $\chi_{195}(74,·)$, $\chi_{195}(139,·)$, $\chi_{195}(14,·)$, $\chi_{195}(79,·)$, $\chi_{195}(16,·)$, $\chi_{195}(146,·)$, $\chi_{195}(29,·)$, $\chi_{195}(94,·)$, $\chi_{195}(101,·)$, $\chi_{195}(166,·)$, $\chi_{195}(49,·)$, $\chi_{195}(179,·)$, $\chi_{195}(116,·)$, $\chi_{195}(181,·)$, $\chi_{195}(56,·)$, $\chi_{195}(121,·)$, $\chi_{195}(61,·)$, $\chi_{195}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{6201996740150} a^{22} - \frac{1205449772479}{6201996740150} a^{21} - \frac{713667446537}{6201996740150} a^{20} - \frac{413023687803}{3100998370075} a^{19} + \frac{30674675574}{3100998370075} a^{18} + \frac{2482592888}{620199674015} a^{17} - \frac{294193394217}{6201996740150} a^{16} - \frac{578797891043}{6201996740150} a^{15} - \frac{1906270011791}{6201996740150} a^{14} - \frac{867376474884}{3100998370075} a^{13} + \frac{200118271891}{3100998370075} a^{12} + \frac{599330056862}{3100998370075} a^{11} - \frac{585088476289}{6201996740150} a^{10} - \frac{784626013863}{6201996740150} a^{9} + \frac{929121692303}{6201996740150} a^{8} - \frac{922060619057}{6201996740150} a^{7} + \frac{1153340920727}{6201996740150} a^{6} + \frac{3026024584923}{6201996740150} a^{5} - \frac{2309913026223}{6201996740150} a^{4} - \frac{1685641053403}{6201996740150} a^{3} - \frac{2927334170207}{6201996740150} a^{2} - \frac{1448359772873}{3100998370075} a + \frac{336229445243}{3100998370075}$, $\frac{1}{1771746158639227150415275250} a^{23} + \frac{6755504845561}{354349231727845430083055050} a^{22} + \frac{87363032942531573816672677}{1771746158639227150415275250} a^{21} + \frac{57439294557037664934514961}{1771746158639227150415275250} a^{20} + \frac{413865594187380152658402419}{1771746158639227150415275250} a^{19} + \frac{20404588822057511982486906}{885873079319613575207637625} a^{18} + \frac{404780486088759760929920503}{1771746158639227150415275250} a^{17} + \frac{772497736677368882349464429}{1771746158639227150415275250} a^{16} - \frac{659382022313595848292126253}{1771746158639227150415275250} a^{15} + \frac{17063560475306527543253179}{37696726779558024476920750} a^{14} + \frac{1848234356027138805620769}{354349231727845430083055050} a^{13} + \frac{40351031137440514631847456}{885873079319613575207637625} a^{12} - \frac{392541234078879380205978173}{1771746158639227150415275250} a^{11} + \frac{427571037911399588458410761}{1771746158639227150415275250} a^{10} + \frac{382575924370175196110462611}{1771746158639227150415275250} a^{9} + \frac{31831047547460091035742692}{177174615863922715041527525} a^{8} - \frac{333741879711842422256795343}{885873079319613575207637625} a^{7} - \frac{87546556790375026545378809}{1771746158639227150415275250} a^{6} - \frac{310305408429968199516571233}{885873079319613575207637625} a^{5} - \frac{10425558319581447115508116}{177174615863922715041527525} a^{4} + \frac{634114638122560934622654941}{1771746158639227150415275250} a^{3} + \frac{738331837091770043148504291}{1771746158639227150415275250} a^{2} + \frac{717143969330646941681421397}{1771746158639227150415275250} a - \frac{62233219262214666672158038}{885873079319613575207637625}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{10316289652895263256781}{96906752646678726161750} a^{23} - \frac{702511008329429380021}{9690675264667872616175} a^{22} + \frac{171719279169693620878897}{96906752646678726161750} a^{21} - \frac{2907767028015160275802}{48453376323339363080875} a^{20} + \frac{1913697985924541771617479}{96906752646678726161750} a^{19} + \frac{132196697172520347171627}{96906752646678726161750} a^{18} + \frac{10774557893216937911354643}{96906752646678726161750} a^{17} + \frac{2314086029228867758909302}{48453376323339363080875} a^{16} + \frac{42102882135047228889049877}{96906752646678726161750} a^{15} + \frac{8624371902627437018808659}{48453376323339363080875} a^{14} + \frac{17740985810751019004126283}{19381350529335745232350} a^{13} + \frac{41869685808686134819061117}{96906752646678726161750} a^{12} + \frac{133574998648687952010455427}{96906752646678726161750} a^{11} + \frac{30447145078871001743141263}{48453376323339363080875} a^{10} + \frac{123966758091005610355196461}{96906752646678726161750} a^{9} + \frac{2516337352019889058505081}{3876270105867149046470} a^{8} + \frac{82974011953599154204950889}{96906752646678726161750} a^{7} + \frac{19150428489822785453530108}{48453376323339363080875} a^{6} + \frac{29322866671213926872900259}{96906752646678726161750} a^{5} + \frac{2916669400240715495399667}{19381350529335745232350} a^{4} + \frac{3757269742102012624289333}{48453376323339363080875} a^{3} + \frac{1257654603331363798135838}{48453376323339363080875} a^{2} + \frac{337333081682921137866397}{96906752646678726161750} a + \frac{78137336706218675139329}{96906752646678726161750} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7346081.887826216 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |