Normalized defining polynomial
\( x^{24} - 5 x^{23} + x^{22} + 61 x^{21} - 39 x^{20} - 700 x^{19} + 3090 x^{18} - 7779 x^{17} + 22384 x^{16} - 72096 x^{15} + 207606 x^{14} - 616456 x^{13} + 1615995 x^{12} - 3573246 x^{11} + 7176468 x^{10} - 14846103 x^{9} + 25647354 x^{8} - 34272758 x^{7} + 48792467 x^{6} - 43925395 x^{5} + 44954508 x^{4} - 483717 x^{3} - 63782464 x^{2} + 5264033 x + 40608077 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(245487640296656844759247184649542028256755290441=7^{16}\cdot 41^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $94.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(287=7\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{287}(1,·)$, $\chi_{287}(260,·)$, $\chi_{287}(9,·)$, $\chi_{287}(247,·)$, $\chi_{287}(204,·)$, $\chi_{287}(79,·)$, $\chi_{287}(81,·)$, $\chi_{287}(85,·)$, $\chi_{287}(214,·)$, $\chi_{287}(155,·)$, $\chi_{287}(284,·)$, $\chi_{287}(32,·)$, $\chi_{287}(163,·)$, $\chi_{287}(165,·)$, $\chi_{287}(232,·)$, $\chi_{287}(44,·)$, $\chi_{287}(109,·)$, $\chi_{287}(50,·)$, $\chi_{287}(219,·)$, $\chi_{287}(137,·)$, $\chi_{287}(120,·)$, $\chi_{287}(249,·)$, $\chi_{287}(114,·)$, $\chi_{287}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{23074} a^{19} - \frac{423}{11537} a^{18} + \frac{6945}{23074} a^{17} - \frac{7211}{23074} a^{16} - \frac{3643}{23074} a^{15} + \frac{5239}{11537} a^{14} + \frac{6669}{23074} a^{13} + \frac{2925}{11537} a^{12} + \frac{2286}{11537} a^{11} - \frac{2875}{11537} a^{10} - \frac{1666}{11537} a^{9} - \frac{1116}{11537} a^{8} - \frac{3484}{11537} a^{7} + \frac{4280}{11537} a^{6} - \frac{5443}{11537} a^{5} + \frac{8309}{23074} a^{4} - \frac{8807}{23074} a^{3} + \frac{483}{23074} a^{2} + \frac{9609}{23074} a - \frac{3315}{11537}$, $\frac{1}{23074} a^{20} - \frac{2507}{11537} a^{18} + \frac{7463}{23074} a^{17} - \frac{538}{11537} a^{16} + \frac{8879}{23074} a^{15} - \frac{448}{11537} a^{14} - \frac{2653}{11537} a^{13} + \frac{4299}{23074} a^{12} + \frac{4402}{11537} a^{11} + \frac{391}{11537} a^{10} - \frac{3038}{11537} a^{9} - \frac{1586}{11537} a^{8} - \frac{1249}{11537} a^{7} + \frac{4356}{11537} a^{6} + \frac{5279}{23074} a^{5} + \frac{6111}{23074} a^{4} - \frac{4437}{11537} a^{3} - \frac{4321}{11537} a^{2} - \frac{11001}{23074} a + \frac{9539}{23074}$, $\frac{1}{853738} a^{21} - \frac{3}{426869} a^{20} + \frac{9}{853738} a^{19} + \frac{33705}{853738} a^{18} + \frac{389399}{853738} a^{17} - \frac{81965}{426869} a^{16} - \frac{170647}{853738} a^{15} - \frac{365}{426869} a^{14} - \frac{88296}{426869} a^{13} - \frac{83580}{426869} a^{12} + \frac{34927}{426869} a^{11} - \frac{163703}{426869} a^{10} + \frac{1253}{3071} a^{9} + \frac{1818}{11537} a^{8} - \frac{171245}{426869} a^{7} - \frac{13901}{853738} a^{6} - \frac{274375}{853738} a^{5} - \frac{4151}{853738} a^{4} + \frac{247565}{853738} a^{3} + \frac{137465}{426869} a^{2} + \frac{956}{11537} a + \frac{118010}{426869}$, $\frac{1}{853738} a^{22} + \frac{5}{426869} a^{20} + \frac{15}{853738} a^{19} - \frac{73557}{853738} a^{18} + \frac{313251}{853738} a^{17} - \frac{327647}{853738} a^{16} + \frac{148769}{853738} a^{15} - \frac{168112}{426869} a^{14} - \frac{110600}{426869} a^{13} - \frac{109227}{853738} a^{12} - \frac{93631}{426869} a^{11} + \frac{174891}{426869} a^{10} + \frac{16920}{426869} a^{9} - \frac{159368}{426869} a^{8} - \frac{103549}{853738} a^{7} - \frac{320633}{853738} a^{6} - \frac{185748}{426869} a^{5} + \frac{47967}{426869} a^{4} - \frac{96455}{426869} a^{3} - \frac{192118}{426869} a^{2} - \frac{425947}{853738} a + \frac{104951}{853738}$, $\frac{1}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{23} - \frac{117814807488682976325964665236446080073323137245782501767977873433088781412}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{22} - \frac{30948891074172577879517357149455327036806396739326121358565118969965891114}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{21} - \frac{7174173686775414682246981664784276157330837806907020202814265644560614951097}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{20} + \frac{4692080451471203823145596910223425589931359916237072179551454352504447697813}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{19} - \frac{28846643904979947798551913197788942596425587782996992820609728046925439227846925}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{18} + \frac{116670333705274457775951907838967186001517507039629699005688219746766763922403863}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{17} + \frac{107304578803298511543392787125861088078161611984691758142929718868526605122743045}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{16} + \frac{138154212854277247724083922121238729997593221665141526908222249335634097665650055}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{15} - \frac{28506435448957753747017362024860237754591967952833403614329929496549067881036383}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{14} + \frac{126422137928117895370315546648256624501097438164850483470440184538160774322131181}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{13} + \frac{12515972968736592186120478897707180989232279229690751985161507465776990159969616}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{12} - \frac{120054378209148283890903364835069173813085595178603631708105233120585116412118207}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{11} - \frac{74465409283271287073379880880738165227277771449588893819007520247515584537915110}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{10} + \frac{151165892819492087890229709851974145639794916001793316002792386065833204408061986}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{9} + \frac{197982664961456243472245230688755223638595604789174000612901726317701583486561895}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{8} + \frac{1343136093580717213479067311085752158449768306199820403468492093578532927762847}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{7} + \frac{109027216869155473224314910985632638137563381659808948960029309756332254598125721}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{6} - \frac{25744381701612401856320405753226684342651606104234577958522697513012124856709794}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{5} - \frac{30857520289169316306507581731108199785360636932209911007342517982926969468771238}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{4} + \frac{18430734222904539751719606681634725160200022937395272234500443769672888655120703}{383105489803686059002251162049672504612012295058743629413968123364257400904831067} a^{3} - \frac{259105027865934293463078903696945498293086651039723163347302483742650993127647825}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a^{2} + \frac{370877839815898753561900465208686789074214701375900954788383075460357958315094669}{766210979607372118004502324099345009224024590117487258827936246728514801809662134} a + \frac{28682812795236212252609111643910185961013485409721389449374196872094500517192895}{383105489803686059002251162049672504612012295058743629413968123364257400904831067}$
Class group and class number
$C_{2}\times C_{3218}$, which has order $6436$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7812223142.924683 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), \(\Q(\zeta_{7})^+\), 4.4.68921.1, 6.6.165479321.1, 8.0.194754273881.1, 12.12.1887291702776240766761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}$ | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | $24$ | $24$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |