Normalized defining polynomial
\( x^{24} + 91 x^{20} + 1391 x^{16} + 2688 x^{12} + 1287 x^{8} + 182 x^{4} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2283749599146799148302336000000000000=2^{48}\cdot 5^{12}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(261,·)$, $\chi_{280}(51,·)$, $\chi_{280}(71,·)$, $\chi_{280}(9,·)$, $\chi_{280}(11,·)$, $\chi_{280}(239,·)$, $\chi_{280}(141,·)$, $\chi_{280}(79,·)$, $\chi_{280}(81,·)$, $\chi_{280}(211,·)$, $\chi_{280}(149,·)$, $\chi_{280}(151,·)$, $\chi_{280}(219,·)$, $\chi_{280}(29,·)$, $\chi_{280}(99,·)$, $\chi_{280}(39,·)$, $\chi_{280}(169,·)$, $\chi_{280}(109,·)$, $\chi_{280}(221,·)$, $\chi_{280}(179,·)$, $\chi_{280}(121,·)$, $\chi_{280}(249,·)$, $\chi_{280}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{87} a^{16} - \frac{4}{29} a^{12} + \frac{10}{87} a^{8} + \frac{31}{87} a^{4} - \frac{4}{87}$, $\frac{1}{87} a^{17} - \frac{4}{29} a^{13} + \frac{10}{87} a^{9} + \frac{31}{87} a^{5} - \frac{4}{87} a$, $\frac{1}{87} a^{18} - \frac{4}{29} a^{14} + \frac{10}{87} a^{10} + \frac{31}{87} a^{6} - \frac{4}{87} a^{2}$, $\frac{1}{87} a^{19} - \frac{4}{29} a^{15} + \frac{10}{87} a^{11} + \frac{31}{87} a^{7} - \frac{4}{87} a^{3}$, $\frac{1}{11988687} a^{20} - \frac{44207}{11988687} a^{16} + \frac{544270}{11988687} a^{12} + \frac{2211407}{11988687} a^{8} + \frac{929836}{3996229} a^{4} - \frac{1401487}{11988687}$, $\frac{1}{11988687} a^{21} - \frac{44207}{11988687} a^{17} + \frac{544270}{11988687} a^{13} + \frac{2211407}{11988687} a^{9} + \frac{929836}{3996229} a^{5} - \frac{1401487}{11988687} a$, $\frac{1}{11988687} a^{22} - \frac{44207}{11988687} a^{18} + \frac{544270}{11988687} a^{14} + \frac{2211407}{11988687} a^{10} + \frac{929836}{3996229} a^{6} - \frac{1401487}{11988687} a^{2}$, $\frac{1}{11988687} a^{23} - \frac{44207}{11988687} a^{19} + \frac{544270}{11988687} a^{15} + \frac{2211407}{11988687} a^{11} + \frac{929836}{3996229} a^{7} - \frac{1401487}{11988687} a^{3}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{375523}{11988687} a^{21} - \frac{34178056}{11988687} a^{17} - \frac{522828208}{11988687} a^{13} - \frac{1015070498}{11988687} a^{9} - \frac{156565458}{3996229} a^{5} - \frac{46242242}{11988687} a \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27409659.83250929 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |