Properties

Label 24.0.22837495991...0000.1
Degree $24$
Signature $[0, 12]$
Discriminant $2^{48}\cdot 5^{12}\cdot 7^{16}$
Root discriminant $32.73$
Ramified primes $2, 5, 7$
Class number $27$ (GRH)
Class group $[3, 3, 3]$ (GRH)
Galois group $C_2^2\times C_6$ (as 24T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, 182, 0, 0, 0, 1287, 0, 0, 0, 2688, 0, 0, 0, 1391, 0, 0, 0, 91, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 91*x^20 + 1391*x^16 + 2688*x^12 + 1287*x^8 + 182*x^4 + 1)
 
gp: K = bnfinit(x^24 + 91*x^20 + 1391*x^16 + 2688*x^12 + 1287*x^8 + 182*x^4 + 1, 1)
 

Normalized defining polynomial

\( x^{24} + 91 x^{20} + 1391 x^{16} + 2688 x^{12} + 1287 x^{8} + 182 x^{4} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2283749599146799148302336000000000000=2^{48}\cdot 5^{12}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(280=2^{3}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(261,·)$, $\chi_{280}(51,·)$, $\chi_{280}(71,·)$, $\chi_{280}(9,·)$, $\chi_{280}(11,·)$, $\chi_{280}(239,·)$, $\chi_{280}(141,·)$, $\chi_{280}(79,·)$, $\chi_{280}(81,·)$, $\chi_{280}(211,·)$, $\chi_{280}(149,·)$, $\chi_{280}(151,·)$, $\chi_{280}(219,·)$, $\chi_{280}(29,·)$, $\chi_{280}(99,·)$, $\chi_{280}(39,·)$, $\chi_{280}(169,·)$, $\chi_{280}(109,·)$, $\chi_{280}(221,·)$, $\chi_{280}(179,·)$, $\chi_{280}(121,·)$, $\chi_{280}(249,·)$, $\chi_{280}(191,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{87} a^{16} - \frac{4}{29} a^{12} + \frac{10}{87} a^{8} + \frac{31}{87} a^{4} - \frac{4}{87}$, $\frac{1}{87} a^{17} - \frac{4}{29} a^{13} + \frac{10}{87} a^{9} + \frac{31}{87} a^{5} - \frac{4}{87} a$, $\frac{1}{87} a^{18} - \frac{4}{29} a^{14} + \frac{10}{87} a^{10} + \frac{31}{87} a^{6} - \frac{4}{87} a^{2}$, $\frac{1}{87} a^{19} - \frac{4}{29} a^{15} + \frac{10}{87} a^{11} + \frac{31}{87} a^{7} - \frac{4}{87} a^{3}$, $\frac{1}{11988687} a^{20} - \frac{44207}{11988687} a^{16} + \frac{544270}{11988687} a^{12} + \frac{2211407}{11988687} a^{8} + \frac{929836}{3996229} a^{4} - \frac{1401487}{11988687}$, $\frac{1}{11988687} a^{21} - \frac{44207}{11988687} a^{17} + \frac{544270}{11988687} a^{13} + \frac{2211407}{11988687} a^{9} + \frac{929836}{3996229} a^{5} - \frac{1401487}{11988687} a$, $\frac{1}{11988687} a^{22} - \frac{44207}{11988687} a^{18} + \frac{544270}{11988687} a^{14} + \frac{2211407}{11988687} a^{10} + \frac{929836}{3996229} a^{6} - \frac{1401487}{11988687} a^{2}$, $\frac{1}{11988687} a^{23} - \frac{44207}{11988687} a^{19} + \frac{544270}{11988687} a^{15} + \frac{2211407}{11988687} a^{11} + \frac{929836}{3996229} a^{7} - \frac{1401487}{11988687} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{375523}{11988687} a^{21} - \frac{34178056}{11988687} a^{17} - \frac{522828208}{11988687} a^{13} - \frac{1015070498}{11988687} a^{9} - \frac{156565458}{3996229} a^{5} - \frac{46242242}{11988687} a \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27409659.83250929 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_6$ (as 24T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2^2\times C_6$
Character table for $C_2^2\times C_6$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{10})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), 6.0.153664.1, 6.0.1229312.1, 6.6.1229312.1, 6.6.300125.1, 6.0.19208000.1, 6.0.153664000.1, 6.6.153664000.1, 8.0.40960000.1, 12.0.96717311574016.1, 12.0.368947264000000.1, 12.0.1511207993344000000.3, 12.0.23612624896000000.1, 12.0.1511207993344000000.1, 12.12.23612624896000000.1, 12.0.1511207993344000000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ R R ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{24}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
5.12.6.1$x^{12} + 500 x^{6} - 3125 x^{2} + 62500$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$