Normalized defining polynomial
\( x^{24} - 4 x^{23} + 8 x^{22} - 12 x^{21} + 24 x^{20} - 56 x^{19} + 104 x^{18} - 152 x^{17} + 224 x^{16} - 376 x^{15} + 608 x^{14} - 848 x^{13} + 1156 x^{12} - 1696 x^{11} + 2432 x^{10} - 3008 x^{9} + 3584 x^{8} - 4864 x^{7} + 6656 x^{6} - 7168 x^{5} + 6144 x^{4} - 6144 x^{3} + 8192 x^{2} - 8192 x + 4096 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(2243572222946525052726785077149696\)\(\medspace = 2^{32}\cdot 3^{12}\cdot 23^{4}\cdot 37^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $24.53$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 23, 37$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{4} a^{7} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{7} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{15} + \frac{1}{4} a^{3}$, $\frac{1}{32} a^{16} + \frac{1}{8} a^{4}$, $\frac{1}{64} a^{17} + \frac{1}{16} a^{5}$, $\frac{1}{256} a^{18} - \frac{1}{64} a^{15} - \frac{1}{32} a^{14} - \frac{1}{32} a^{13} + \frac{1}{32} a^{12} + \frac{1}{32} a^{11} + \frac{1}{32} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} + \frac{1}{64} a^{6} + \frac{3}{16} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2}$, $\frac{1}{512} a^{19} - \frac{1}{128} a^{16} + \frac{1}{64} a^{15} + \frac{1}{64} a^{14} + \frac{1}{64} a^{13} + \frac{1}{64} a^{12} + \frac{1}{64} a^{10} - \frac{1}{32} a^{8} - \frac{31}{128} a^{7} + \frac{7}{32} a^{6} - \frac{3}{16} a^{5} + \frac{3}{16} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{1024} a^{20} - \frac{1}{256} a^{17} + \frac{1}{128} a^{16} + \frac{1}{128} a^{15} + \frac{1}{128} a^{14} + \frac{1}{128} a^{13} + \frac{1}{128} a^{11} - \frac{1}{16} a^{10} - \frac{1}{64} a^{9} - \frac{31}{256} a^{8} + \frac{15}{64} a^{7} - \frac{3}{32} a^{6} + \frac{3}{32} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{2048} a^{21} - \frac{1}{512} a^{18} + \frac{1}{256} a^{17} + \frac{1}{256} a^{16} + \frac{1}{256} a^{15} + \frac{1}{256} a^{14} + \frac{1}{256} a^{12} - \frac{1}{32} a^{11} + \frac{7}{128} a^{10} - \frac{31}{512} a^{9} + \frac{15}{128} a^{8} + \frac{5}{64} a^{7} + \frac{3}{64} a^{6} - \frac{1}{4} a^{5} - \frac{3}{8} a^{4} - \frac{7}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4096} a^{22} - \frac{1}{1024} a^{19} - \frac{1}{512} a^{18} + \frac{1}{512} a^{17} + \frac{1}{512} a^{16} + \frac{9}{512} a^{15} - \frac{1}{32} a^{14} - \frac{15}{512} a^{13} - \frac{3}{64} a^{12} - \frac{1}{256} a^{11} - \frac{31}{1024} a^{10} + \frac{7}{256} a^{9} + \frac{5}{128} a^{8} - \frac{21}{128} a^{7} - \frac{9}{64} a^{6} - \frac{1}{8} a^{5} - \frac{11}{32} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{1564672} a^{23} - \frac{69}{782336} a^{22} + \frac{41}{391168} a^{21} - \frac{149}{391168} a^{20} + \frac{27}{97792} a^{19} - \frac{367}{195584} a^{18} + \frac{1059}{195584} a^{17} + \frac{1707}{195584} a^{16} + \frac{1773}{97792} a^{15} - \frac{4587}{195584} a^{14} - \frac{2817}{97792} a^{13} - \frac{1519}{97792} a^{12} - \frac{22871}{391168} a^{11} - \frac{8079}{195584} a^{10} + \frac{5117}{97792} a^{9} - \frac{5627}{48896} a^{8} + \frac{1559}{24448} a^{7} + \frac{283}{3056} a^{6} - \frac{5139}{12224} a^{5} + \frac{1249}{6112} a^{4} - \frac{777}{3056} a^{3} + \frac{73}{382} a^{2} - \frac{39}{382} a + \frac{67}{382}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{2121}{1564672} a^{23} - \frac{2027}{391168} a^{22} + \frac{4067}{391168} a^{21} - \frac{5081}{391168} a^{20} + \frac{3945}{195584} a^{19} - \frac{7913}{195584} a^{18} + \frac{15641}{195584} a^{17} - \frac{21823}{195584} a^{16} + \frac{1663}{12224} a^{15} - \frac{36923}{195584} a^{14} + \frac{14423}{48896} a^{13} - \frac{38211}{97792} a^{12} + \frac{195609}{391168} a^{11} - \frac{8905}{12224} a^{10} + \frac{101385}{97792} a^{9} - \frac{49319}{48896} a^{8} + \frac{16473}{24448} a^{7} - \frac{8111}{12224} a^{6} + \frac{18505}{12224} a^{5} - \frac{4509}{3056} a^{4} - \frac{451}{3056} a^{3} + \frac{887}{382} a^{2} - \frac{1751}{764} a + \frac{97}{191} \) (order $12$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 25169728.518406376 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^3\times S_4$ (as 24T400):
A solvable group of order 192 |
The 40 conjugacy class representatives for $C_2^3\times S_4$ |
Character table for $C_2^3\times S_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ |
2.12.16.13 | $x^{12} + 12 x^{10} + 12 x^{8} + 8 x^{6} + 32 x^{4} - 16 x^{2} + 16$ | $6$ | $2$ | $16$ | $D_6$ | $[2]_{3}^{2}$ | |
$3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
$23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
$37$ | 37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.1.1 | $x^{2} - 37$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |