Normalized defining polynomial
\( x^{24} - x^{23} + 18 x^{22} - 22 x^{21} + 81 x^{20} - 1079 x^{19} + 1221 x^{18} + 5123 x^{17} + 29362 x^{16} - 66291 x^{15} - 97542 x^{14} - 520065 x^{13} + 1952874 x^{12} - 1252303 x^{11} + 12300149 x^{10} - 36700642 x^{9} + 6068680 x^{8} - 54124340 x^{7} + 187309511 x^{6} - 20709065 x^{5} + 769210633 x^{4} - 898459740 x^{3} + 991948431 x^{2} - 1194592532 x + 484203487 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(221912159494888970129181006529110805060115683312073=13^{22}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(221=13\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{221}(64,·)$, $\chi_{221}(1,·)$, $\chi_{221}(4,·)$, $\chi_{221}(138,·)$, $\chi_{221}(140,·)$, $\chi_{221}(206,·)$, $\chi_{221}(16,·)$, $\chi_{221}(145,·)$, $\chi_{221}(213,·)$, $\chi_{221}(151,·)$, $\chi_{221}(152,·)$, $\chi_{221}(120,·)$, $\chi_{221}(219,·)$, $\chi_{221}(93,·)$, $\chi_{221}(30,·)$, $\chi_{221}(161,·)$, $\chi_{221}(162,·)$, $\chi_{221}(35,·)$, $\chi_{221}(38,·)$, $\chi_{221}(166,·)$, $\chi_{221}(110,·)$, $\chi_{221}(118,·)$, $\chi_{221}(202,·)$, $\chi_{221}(189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{359} a^{21} - \frac{164}{359} a^{20} + \frac{114}{359} a^{19} + \frac{15}{359} a^{18} - \frac{30}{359} a^{17} - \frac{118}{359} a^{16} + \frac{41}{359} a^{15} + \frac{32}{359} a^{14} - \frac{93}{359} a^{13} - \frac{126}{359} a^{12} - \frac{6}{359} a^{11} + \frac{95}{359} a^{10} + \frac{67}{359} a^{9} + \frac{155}{359} a^{8} - \frac{13}{359} a^{7} - \frac{62}{359} a^{6} + \frac{138}{359} a^{5} - \frac{94}{359} a^{4} + \frac{131}{359} a^{3} - \frac{118}{359} a^{2} - \frac{82}{359} a - \frac{33}{359}$, $\frac{1}{359} a^{22} + \frac{143}{359} a^{20} + \frac{43}{359} a^{19} - \frac{83}{359} a^{18} - \frac{12}{359} a^{17} + \frac{75}{359} a^{16} - \frac{65}{359} a^{15} + \frac{129}{359} a^{14} + \frac{59}{359} a^{13} + \frac{152}{359} a^{12} - \frac{171}{359} a^{11} - \frac{149}{359} a^{10} + \frac{14}{359} a^{9} - \frac{82}{359} a^{8} - \frac{40}{359} a^{7} + \frac{22}{359} a^{6} - \frac{79}{359} a^{5} + \frac{152}{359} a^{4} - \frac{174}{359} a^{3} - \frac{48}{359} a^{2} + \frac{161}{359} a - \frac{27}{359}$, $\frac{1}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{23} - \frac{985895262983025033078946378512488217607358629067679769515394565183359245302532619954678264748237310807}{2435379710649741684351901919155276124548623816301983901734464695999159881394356074310120002536741724592901} a^{22} - \frac{1010825583074025010454702011427204766591532759509505468630527032911135341850252209101159194202253839665934}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{21} + \frac{709268611252182690481566293831806569048702355665853710645654266526729615047509063956116150891907926747820160}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{20} - \frac{421507585885586184395070278870249205696102103328482962080303300077912484894165088914356558134705573252988879}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{19} + \frac{140351530133385866624081172519638073917527833470392593949683981762984672151113459920881407707883496331892098}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{18} + \frac{305252929738485789158953899279469181788312428495964109061171214011448106333441575431813800952764524262114490}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{17} - \frac{582788526839719290475538585403224695396905206557623813777862633032159188414715992217738629129593218827001240}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{16} + \frac{1990385549417602463735782387457823368793175754352405633347727187625301126361650955734549898390882152854819}{4022785984443723729305509298214704016315693379016926054954143634338445152275356969542900171321136052043427} a^{15} - \frac{236789919530656517481661413385994219526186783316181954830115766343951892142952966893488686603995534754429885}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{14} + \frac{307710094361192053092081389883563658313709590144507131758158875223252253028685503248786079782847498539030467}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{13} - \frac{29251974578490880848140256914289108572818246460927112808488067354380212438178778241393864006776164701801361}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{12} - \frac{41879095594569431676887420836240615601345010453495737077801699303762463536977775455771210323407269812882209}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{11} - \frac{391055467464330803662221351625575310942445039600507605173987300708542080873612452120126868285002529365545433}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{10} + \frac{132195046060993475382973633441629635072432698168325508138661395643285249842428479222811522343565316114381843}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{9} + \frac{185350067734586748606661877183862752371268846777333136625627086257728717675042202249743444157815581523256733}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{8} - \frac{431750246253642513322421309658193236798787133627709200097669178855199337693251323672358931981833385185493875}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{7} + \frac{376289143429959786038449342116298114645670897525093702518412233930203234507893217446824343586543379469691055}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{6} - \frac{2236121678751629022418350667396819792822720327365026185951580337682602122121874087747122101893474442611235}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{5} + \frac{323555463328507723230774073371464341701678448331125306433283280354126092562854479675579325162798030522541983}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{4} + \frac{258250586861253265507823832863527151153351017926704390398697564875860124257874113191598824357055858159181299}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{3} + \frac{447527846763606731410894670234235768066490551688808123804785545345112580935300020118707932243700113671338127}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a^{2} + \frac{487858604560003471377906887024294329453411454813856759512178505505807828997295713164578372864180413457587072}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293} a + \frac{141744963632140803030456052252542875198961829212485578547193556620021584473933324913061967784727927865755863}{1444180168415296818820677838059078741857333923067076453728537564727501809666853152065901161504287842683590293}$
Class group and class number
$C_{2}\times C_{2}\times C_{14116}$, which has order $56464$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20400053551.79016 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 3.3.169.1, 4.4.830297.1, 6.6.140320193.1, 8.0.1980626399884457.2, 12.12.16348345805451893172953.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | $24$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{3}$ | $24$ | $24$ | R | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | $24$ | $24$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{3}$ | $24$ | $24$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ | |
| 17 | Data not computed | ||||||