Normalized defining polynomial
\( x^{24} + 27 x^{22} - 8 x^{21} + 405 x^{20} - 36 x^{19} + 2970 x^{18} - 1512 x^{17} + 13275 x^{16} + 4036 x^{15} + 125271 x^{14} + 30078 x^{13} - 34809 x^{12} - 434232 x^{11} + 1143855 x^{10} + 2964574 x^{9} + 2598465 x^{8} - 8457624 x^{7} - 22218139 x^{6} - 5011404 x^{5} + 80638593 x^{4} + 165688332 x^{3} + 238003584 x^{2} + 132575034 x + 49248593 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2147965966579880698889178764823700736525155172352=2^{24}\cdot 3^{32}\cdot 17^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(612=2^{2}\cdot 3^{2}\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{612}(1,·)$, $\chi_{612}(427,·)$, $\chi_{612}(577,·)$, $\chi_{612}(535,·)$, $\chi_{612}(13,·)$, $\chi_{612}(205,·)$, $\chi_{612}(19,·)$, $\chi_{612}(151,·)$, $\chi_{612}(409,·)$, $\chi_{612}(331,·)$, $\chi_{612}(157,·)$, $\chi_{612}(223,·)$, $\chi_{612}(355,·)$, $\chi_{612}(421,·)$, $\chi_{612}(169,·)$, $\chi_{612}(43,·)$, $\chi_{612}(451,·)$, $\chi_{612}(559,·)$, $\chi_{612}(565,·)$, $\chi_{612}(361,·)$, $\chi_{612}(217,·)$, $\chi_{612}(127,·)$, $\chi_{612}(247,·)$, $\chi_{612}(373,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{52} a^{18} - \frac{7}{26} a^{16} - \frac{3}{26} a^{15} - \frac{9}{52} a^{14} - \frac{11}{26} a^{13} - \frac{1}{2} a^{12} - \frac{2}{13} a^{11} + \frac{11}{52} a^{10} + \frac{3}{26} a^{9} - \frac{15}{52} a^{8} - \frac{4}{13} a^{7} - \frac{6}{13} a^{6} + \frac{3}{26} a^{5} - \frac{4}{13} a^{4} + \frac{9}{26} a^{3} + \frac{4}{13} a^{2} + \frac{11}{26} a + \frac{9}{52}$, $\frac{1}{52} a^{19} - \frac{7}{26} a^{17} - \frac{3}{26} a^{16} - \frac{9}{52} a^{15} - \frac{11}{26} a^{14} - \frac{1}{2} a^{13} - \frac{2}{13} a^{12} + \frac{11}{52} a^{11} + \frac{3}{26} a^{10} - \frac{15}{52} a^{9} - \frac{4}{13} a^{8} - \frac{6}{13} a^{7} + \frac{3}{26} a^{6} - \frac{4}{13} a^{5} + \frac{9}{26} a^{4} + \frac{4}{13} a^{3} + \frac{11}{26} a^{2} + \frac{9}{52} a$, $\frac{1}{52} a^{20} - \frac{3}{26} a^{17} + \frac{3}{52} a^{16} - \frac{1}{26} a^{15} + \frac{1}{13} a^{14} - \frac{1}{13} a^{13} + \frac{11}{52} a^{12} - \frac{1}{26} a^{11} - \frac{17}{52} a^{10} + \frac{4}{13} a^{9} - \frac{1}{2} a^{8} - \frac{5}{26} a^{7} + \frac{3}{13} a^{6} - \frac{1}{26} a^{5} + \frac{7}{26} a^{3} + \frac{25}{52} a^{2} - \frac{1}{13} a + \frac{11}{26}$, $\frac{1}{52} a^{21} + \frac{3}{52} a^{17} + \frac{9}{26} a^{16} + \frac{5}{13} a^{15} - \frac{3}{26} a^{14} - \frac{17}{52} a^{13} - \frac{1}{26} a^{12} - \frac{1}{4} a^{11} - \frac{11}{26} a^{10} + \frac{5}{26} a^{9} + \frac{1}{13} a^{8} + \frac{5}{13} a^{7} + \frac{5}{26} a^{6} - \frac{4}{13} a^{5} + \frac{11}{26} a^{4} - \frac{23}{52} a^{3} - \frac{3}{13} a^{2} - \frac{1}{26} a + \frac{1}{26}$, $\frac{1}{3732291653890342221254089038508397128676} a^{22} - \frac{128236120930635763310641146989004313}{1866145826945171110627044519254198564338} a^{21} - \frac{11498303231027580545685057456113331201}{1866145826945171110627044519254198564338} a^{20} - \frac{12291639759031576131851425157335868175}{1866145826945171110627044519254198564338} a^{19} + \frac{5459210566182071056212153268956098603}{933072913472585555313522259627099282169} a^{18} - \frac{33141763198983223927817275379263813973}{933072913472585555313522259627099282169} a^{17} + \frac{354428661753597234409034117802206817752}{933072913472585555313522259627099282169} a^{16} - \frac{756435705082246532292150384257265828901}{1866145826945171110627044519254198564338} a^{15} - \frac{43396587791214507969610304482932114717}{1866145826945171110627044519254198564338} a^{14} + \frac{63853459027308542241030628863360058715}{1866145826945171110627044519254198564338} a^{13} + \frac{195071387462704900375101679878135658939}{3732291653890342221254089038508397128676} a^{12} - \frac{586246737731586920481460144986421549541}{1866145826945171110627044519254198564338} a^{11} - \frac{61569710532177227704557336421131357097}{287099357991564786250314541423722856052} a^{10} + \frac{403793248381577779403480326540651150607}{933072913472585555313522259627099282169} a^{9} + \frac{74647259293293967252055776220554612121}{287099357991564786250314541423722856052} a^{8} - \frac{764782859492472678244154089485095321215}{1866145826945171110627044519254198564338} a^{7} + \frac{342038380323150441591251105052006424918}{933072913472585555313522259627099282169} a^{6} - \frac{155453368724462884087177710948561580937}{933072913472585555313522259627099282169} a^{5} - \frac{1632170513037572629172051717462602682459}{3732291653890342221254089038508397128676} a^{4} - \frac{125683415394128026637330219329744830223}{933072913472585555313522259627099282169} a^{3} - \frac{309539866565109942181155694137449663762}{933072913472585555313522259627099282169} a^{2} + \frac{111099647780405137940815118350582782223}{1866145826945171110627044519254198564338} a - \frac{1190393715054231734357154186465614792331}{3732291653890342221254089038508397128676}$, $\frac{1}{1219215205279691676510909674327540773527184062146297332} a^{23} + \frac{21140994872187}{609607602639845838255454837163770386763592031073148666} a^{22} - \frac{2527009141538791186021612349051168944364972899032705}{1219215205279691676510909674327540773527184062146297332} a^{21} - \frac{1197443942577026385761020962676592656133204728577736}{304803801319922919127727418581885193381796015536574333} a^{20} + \frac{188091942837927573542323922417547898772058229622953}{46892892510757372173496525935674645135660925467165282} a^{19} + \frac{5333439478353570874406194799337384825414532990436085}{1219215205279691676510909674327540773527184062146297332} a^{18} - \frac{460795157269366116833147856978690329842404553579652161}{1219215205279691676510909674327540773527184062146297332} a^{17} + \frac{5731004601847387363297934729437192187490490756204387}{304803801319922919127727418581885193381796015536574333} a^{16} + \frac{95373166937308686612132872055435007524489602775628137}{609607602639845838255454837163770386763592031073148666} a^{15} - \frac{129436271535253676073462037944947163344602139825613825}{1219215205279691676510909674327540773527184062146297332} a^{14} + \frac{97822836712113064919916720121163742044760936337255439}{304803801319922919127727418581885193381796015536574333} a^{13} + \frac{72479598742093027011956599401876513157255820713142666}{304803801319922919127727418581885193381796015536574333} a^{12} - \frac{25574238578179967179809360226919392434191814787667423}{304803801319922919127727418581885193381796015536574333} a^{11} + \frac{481057654622924922312358724025341360884488297085669607}{1219215205279691676510909674327540773527184062146297332} a^{10} - \frac{562951868755465660065459344833220812855873208583023573}{1219215205279691676510909674327540773527184062146297332} a^{9} + \frac{353221619200223991051909461655428283118065650689977379}{1219215205279691676510909674327540773527184062146297332} a^{8} + \frac{47492770296189952600234931035832896065849550127423132}{304803801319922919127727418581885193381796015536574333} a^{7} + \frac{80786583587856023645847577305445564133935038158104991}{609607602639845838255454837163770386763592031073148666} a^{6} + \frac{3490031769032477897336713299590330967046994033476523}{93785785021514744346993051871349290271321850934330564} a^{5} - \frac{235114690598439356185378953839841144572832985732742939}{609607602639845838255454837163770386763592031073148666} a^{4} - \frac{325518293735583988735044555084588048098774094266973405}{1219215205279691676510909674327540773527184062146297332} a^{3} - \frac{66884770685767291112061813256822672461950721430304675}{304803801319922919127727418581885193381796015536574333} a^{2} + \frac{174640551265069728549586391895149461570616245724154603}{1219215205279691676510909674327540773527184062146297332} a + \frac{119489447071344840435770745480957738031978213219201327}{1219215205279691676510909674327540773527184062146297332}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{35186}$, which has order $281488$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 363126034.10126877 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), \(\Q(\zeta_{9})^+\), 4.4.4913.1, 6.6.32234193.1, 8.0.105046700288.1, 12.12.5104819233548816337.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $24$ | $24$ | $24$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ | $24$ | $24$ | $24$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ | $24$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |