/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^24 - 5*x^22 + 19*x^20 - 66*x^18 + 221*x^16 - 358*x^14 + 530*x^12 - 723*x^10 + 793*x^8 - 157*x^6 + 31*x^4 - 6*x^2 + 1, 24, 2, [0, 12], 2126907556454464000000000000000000, [2, 5, 7], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, a^14, a^15, a^16, a^17, 1/164891*a^18 + 2495/164891*a^16 - 40833/164891*a^14 + 24303/164891*a^12 - 43903/164891*a^10 + 57450/164891*a^8 + 47471/164891*a^6 + 48407/164891*a^4 + 75253/164891*a^2 - 54614/164891, 1/164891*a^19 + 2495/164891*a^17 - 40833/164891*a^15 + 24303/164891*a^13 - 43903/164891*a^11 + 57450/164891*a^9 + 47471/164891*a^7 + 48407/164891*a^5 + 75253/164891*a^3 - 54614/164891*a, 1/164891*a^20 - 57080/164891*a^10 + 61964/164891, 1/164891*a^21 - 57080/164891*a^11 + 61964/164891*a, 1/164891*a^22 - 57080/164891*a^12 + 61964/164891*a^2, 1/164891*a^23 - 57080/164891*a^13 + 61964/164891*a^3], 1, 3, [3], 1, [ (6079)/(164891)*a^(22) - (23940)/(164891)*a^(20) + (83160)/(164891)*a^(18) - (278460)/(164891)*a^(16) + (917429)/(164891)*a^(14) - (749727)/(164891)*a^(12) + (910980)/(164891)*a^(10) - (999180)/(164891)*a^(8) + (197820)/(164891)*a^(6) + (4164412)/(164891)*a^(4) - (824986)/(164891)*a^(2) + (163631)/(164891) , (3315)/(164891)*a^(22) - (12597)/(164891)*a^(20) + (43758)/(164891)*a^(18) - (146523)/(164891)*a^(16) + (483135)/(164891)*a^(14) - (351390)/(164891)*a^(12) + (479349)/(164891)*a^(10) - (525759)/(164891)*a^(8) + (104091)/(164891)*a^(6) + (2312194)/(164891)*a^(4) + (3978)/(164891)*a^(2) - (663)/(164891) , (597)/(164891)*a^(22) + (220568)/(164891)*a^(12) + (1870725)/(164891)*a^(2) , (73393)/(164891)*a^(23) - (366965)/(164891)*a^(21) + (1394378)/(164891)*a^(19) - (4843938)/(164891)*a^(17) + (16219853)/(164891)*a^(15) - (26274694)/(164891)*a^(13) + (38898290)/(164891)*a^(11) - (53094640)/(164891)*a^(9) + (58200649)/(164891)*a^(7) - (11522701)/(164891)*a^(5) + (2275183)/(164891)*a^(3) - (440358)/(164891)*a - 1 , (73393)/(164891)*a^(23) - (6079)/(164891)*a^(22) - (366810)/(164891)*a^(21) + (23940)/(164891)*a^(20) + (1394378)/(164891)*a^(19) - (83160)/(164891)*a^(18) - (4843938)/(164891)*a^(17) + (278460)/(164891)*a^(16) + (16219853)/(164891)*a^(15) - (917429)/(164891)*a^(14) - (26274694)/(164891)*a^(13) + (749727)/(164891)*a^(12) + (38955004)/(164891)*a^(11) - (910980)/(164891)*a^(10) - (53094640)/(164891)*a^(9) + (999180)/(164891)*a^(8) + (58200649)/(164891)*a^(7) - (197820)/(164891)*a^(6) - (11522701)/(164891)*a^(5) - (4164412)/(164891)*a^(4) + (2275183)/(164891)*a^(3) + (824986)/(164891)*a^(2) - (69834)/(164891)*a + (1260)/(164891) , (6521)/(164891)*a^(22) - (23940)/(164891)*a^(20) + (83160)/(164891)*a^(18) - (278460)/(164891)*a^(16) + (917429)/(164891)*a^(14) - (585873)/(164891)*a^(12) + (910980)/(164891)*a^(10) - (999180)/(164891)*a^(8) + (197820)/(164891)*a^(6) + (4164412)/(164891)*a^(4) + (675215)/(164891)*a^(2) + (163631)/(164891) , (6145)/(164891)*a^(22) - (23940)/(164891)*a^(20) + (83160)/(164891)*a^(18) - (278460)/(164891)*a^(16) + (917429)/(164891)*a^(14) - (724514)/(164891)*a^(12) + (910980)/(164891)*a^(10) - (999180)/(164891)*a^(8) + (197820)/(164891)*a^(6) + (4164412)/(164891)*a^(4) - (362964)/(164891)*a^(2) + (163631)/(164891) , (38730)/(164891)*a^(23) - (71381)/(164891)*a^(22) - (187195)/(164891)*a^(21) + (350450)/(164891)*a^(20) + (703595)/(164891)*a^(19) - (1324030)/(164891)*a^(18) - (2433426)/(164891)*a^(17) + (4588392)/(164891)*a^(16) + (8133300)/(164891)*a^(15) - (15349171)/(164891)*a^(14) - (12438785)/(164891)*a^(13) + (133303)/(911)*a^(12) + (18216010)/(164891)*a^(11) - (35521040)/(164891)*a^(10) - (24580640)/(164891)*a^(9) + (48162100)/(164891)*a^(8) + (26090063)/(164891)*a^(7) - (51982306)/(164891)*a^(6) - (961795)/(164891)*a^(5) + (6088002)/(164891)*a^(4) + (187195)/(164891)*a^(3) - (1199376)/(164891)*a^(2) - (32275)/(164891)*a + (228181)/(164891) , (80)/(911)*a^(23) - (58847)/(164891)*a^(22) - (55179)/(164891)*a^(21) + (294235)/(164891)*a^(20) + (1056)/(911)*a^(19) - (1118116)/(164891)*a^(18) - (3536)/(911)*a^(17) + (3883902)/(164891)*a^(16) + (11647)/(911)*a^(15) - (13005187)/(164891)*a^(14) - (8480)/(911)*a^(13) + (21067226)/(164891)*a^(12) + (2037094)/(164891)*a^(11) - (31188910)/(164891)*a^(10) - (12688)/(911)*a^(9) + (42540093)/(164891)*a^(8) + (2512)/(911)*a^(7) - (46665671)/(164891)*a^(6) + (51687)/(911)*a^(5) + (9238979)/(164891)*a^(4) + (96)/(911)*a^(3) - (1824257)/(164891)*a^(2) - (373420)/(164891)*a + (353082)/(164891) , (73703)/(164891)*a^(23) + (287)/(164891)*a^(22) - (389869)/(164891)*a^(21) + (1503657)/(164891)*a^(19) - (5252329)/(164891)*a^(17) + (17629816)/(164891)*a^(15) - (30870014)/(164891)*a^(13) + (107140)/(164891)*a^(12) + (45920783)/(164891)*a^(11) - (63299266)/(164891)*a^(9) + (71999151)/(164891)*a^(7) - (26032727)/(164891)*a^(5) + (2815084)/(164891)*a^(3) + (1294568)/(164891)*a^(2) - (545429)/(164891)*a , (160669)/(164891)*a^(23) + (40742)/(164891)*a^(22) - (788799)/(164891)*a^(21) - (203710)/(164891)*a^(20) + (2979892)/(164891)*a^(19) + (773943)/(164891)*a^(18) - (10327892)/(164891)*a^(17) - (2688972)/(164891)*a^(16) + (34547813)/(164891)*a^(15) + (9003982)/(164891)*a^(14) - (54304836)/(164891)*a^(13) - (14585636)/(164891)*a^(12) + (79947102)/(164891)*a^(11) + (21593260)/(164891)*a^(10) - (108485808)/(164891)*a^(9) - (29513180)/(164891)*a^(8) + (116855970)/(164891)*a^(7) + (32308406)/(164891)*a^(6) - (13690055)/(164891)*a^(5) - (6396494)/(164891)*a^(4) + (2697017)/(164891)*a^(3) + (1263002)/(164891)*a^(2) - (513088)/(164891)*a - (244452)/(164891) ], 18292450.943147723, [[x^2 + 1, 1], [x^2 - x - 1, 1], [x^2 + 5, 1], [x^3 - x^2 - 2*x + 1, 1], [x^4 + 3*x^2 + 1, 1], [x^4 - x^3 + x^2 - x + 1, 1], [x^4 - 5*x^2 + 5, 1], [x^6 + 5*x^4 + 6*x^2 + 1, 1], [x^6 - x^5 - 7*x^4 + 2*x^3 + 7*x^2 - 2*x - 1, 1], [x^6 - 2*x^5 + 12*x^4 - 14*x^3 + 87*x^2 - 64*x + 281, 1], [x^8 - x^6 + x^4 - x^2 + 1, 1], [x^12 + 15*x^10 + 67*x^8 + 108*x^6 + 71*x^4 + 18*x^2 + 1, 1], [x^12 - x^11 + 3*x^10 - 4*x^9 + 9*x^8 + 2*x^7 + 12*x^6 + x^5 + 25*x^4 - 11*x^3 + 5*x^2 - 2*x + 1, 1], [x^12 - 4*x^11 - 17*x^10 + 74*x^9 + 74*x^8 - 412*x^7 - 23*x^6 + 734*x^5 - 175*x^4 - 324*x^3 + 90*x^2 + 22*x + 1, 1]]]