Normalized defining polynomial
\( x^{24} - 8 x^{23} + 84 x^{22} - 464 x^{21} + 2898 x^{20} - 12544 x^{19} + 57616 x^{18} - 203128 x^{17} + 733607 x^{16} - 2139056 x^{15} + 6251172 x^{14} - 15129912 x^{13} + 35924714 x^{12} - 71363632 x^{11} + 136971996 x^{10} - 220741648 x^{9} + 335285658 x^{8} - 416648024 x^{7} + 455672172 x^{6} - 417111304 x^{5} + 906259624 x^{4} - 1380779704 x^{3} + 3391259336 x^{2} - 2534548816 x + 1528760449 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(174909457836898599788885373561654160049383145472=2^{93}\cdot 3^{12}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(672=2^{5}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{672}(1,·)$, $\chi_{672}(389,·)$, $\chi_{672}(193,·)$, $\chi_{672}(457,·)$, $\chi_{672}(653,·)$, $\chi_{672}(365,·)$, $\chi_{672}(529,·)$, $\chi_{672}(533,·)$, $\chi_{672}(121,·)$, $\chi_{672}(25,·)$, $\chi_{672}(29,·)$, $\chi_{672}(197,·)$, $\chi_{672}(289,·)$, $\chi_{672}(485,·)$, $\chi_{672}(337,·)$, $\chi_{672}(169,·)$, $\chi_{672}(557,·)$, $\chi_{672}(221,·)$, $\chi_{672}(625,·)$, $\chi_{672}(53,·)$, $\chi_{672}(361,·)$, $\chi_{672}(505,·)$, $\chi_{672}(317,·)$, $\chi_{672}(149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{4}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} - \frac{4}{9} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{4}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{9} a$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{4}{9} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{2} - \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a^{2} + \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a - \frac{1}{9}$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{15} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{7} - \frac{4}{27} a^{6} + \frac{1}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{27} a^{3} - \frac{2}{9} a^{2} - \frac{1}{9} a - \frac{2}{27}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{16} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{27} a^{7} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{4}{27} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} + \frac{13}{27} a + \frac{2}{9}$, $\frac{1}{2619} a^{20} - \frac{29}{2619} a^{19} + \frac{31}{2619} a^{18} + \frac{43}{2619} a^{17} + \frac{58}{2619} a^{16} - \frac{134}{2619} a^{15} + \frac{4}{97} a^{14} + \frac{7}{291} a^{13} - \frac{5}{873} a^{12} + \frac{37}{873} a^{11} + \frac{125}{873} a^{10} - \frac{15}{97} a^{9} + \frac{158}{2619} a^{8} + \frac{266}{2619} a^{7} - \frac{229}{2619} a^{6} + \frac{197}{2619} a^{5} + \frac{662}{2619} a^{4} + \frac{692}{2619} a^{3} - \frac{1196}{2619} a^{2} - \frac{494}{2619} a - \frac{2}{27}$, $\frac{1}{2619} a^{21} - \frac{34}{2619} a^{19} - \frac{28}{2619} a^{18} + \frac{47}{873} a^{17} - \frac{4}{2619} a^{16} - \frac{92}{2619} a^{15} - \frac{2}{873} a^{14} + \frac{22}{873} a^{13} - \frac{11}{873} a^{12} + \frac{131}{873} a^{11} - \frac{2}{873} a^{10} + \frac{344}{2619} a^{9} - \frac{130}{873} a^{8} - \frac{275}{2619} a^{7} + \frac{55}{2619} a^{6} + \frac{94}{291} a^{5} - \frac{674}{2619} a^{4} - \frac{176}{873} a^{3} + \frac{133}{291} a^{2} + \frac{515}{2619} a - \frac{11}{27}$, $\frac{1}{30465001870954918125722204139811396935963} a^{22} + \frac{1121398291933174179437076310393691428}{10155000623651639375240734713270465645321} a^{21} + \frac{1167512830022612671850003951033846434}{10155000623651639375240734713270465645321} a^{20} + \frac{51257078616251178488226933030900424324}{30465001870954918125722204139811396935963} a^{19} + \frac{142932996518868792795174785468236234943}{30465001870954918125722204139811396935963} a^{18} + \frac{62616444751504046829445041478438788019}{1128333402627959930582303857030051738369} a^{17} - \frac{76380240311696681261322106693874589320}{3385000207883879791746911571090155215107} a^{16} - \frac{816676670627475532346692996436498802391}{30465001870954918125722204139811396935963} a^{15} - \frac{520117663549147833308020727154543019777}{10155000623651639375240734713270465645321} a^{14} - \frac{407285561928082926150013375238848434005}{10155000623651639375240734713270465645321} a^{13} - \frac{454252227328262242468502445711045315719}{10155000623651639375240734713270465645321} a^{12} + \frac{1386806729024322254143118766656460115988}{10155000623651639375240734713270465645321} a^{11} - \frac{18126720137609245228518973778936717926}{239881904495708016737970111337097613669} a^{10} + \frac{857760732839364906809035880678238948529}{10155000623651639375240734713270465645321} a^{9} + \frac{900192846913693062856746341589622754965}{10155000623651639375240734713270465645321} a^{8} - \frac{3801046430495070098835856882775920035715}{30465001870954918125722204139811396935963} a^{7} + \frac{2961004530063075811316688342535711421584}{30465001870954918125722204139811396935963} a^{6} + \frac{3709623425116755371998505636197721525608}{10155000623651639375240734713270465645321} a^{5} + \frac{12794174904600565009552417451745049486264}{30465001870954918125722204139811396935963} a^{4} + \frac{5254286560385775120542570770708972741012}{30465001870954918125722204139811396935963} a^{3} + \frac{437663403923805174467078643026437920368}{10155000623651639375240734713270465645321} a^{2} - \frac{1394615900152645858011016898410978216138}{3385000207883879791746911571090155215107} a - \frac{39969193875742372536435877387798025353}{314072184236648640471362929276406153979}$, $\frac{1}{30811131808868429148338623003395839922808888861658619} a^{23} - \frac{310451130653}{30811131808868429148338623003395839922808888861658619} a^{22} + \frac{1355689340982628557968262451333446532584887542717}{30811131808868429148338623003395839922808888861658619} a^{21} - \frac{1497316837087924505280260986906130152534286961379}{30811131808868429148338623003395839922808888861658619} a^{20} - \frac{334906628190372692064130479884982452467941027711854}{30811131808868429148338623003395839922808888861658619} a^{19} - \frac{568428587782989882575444970505587618094704466417}{317640534112045661323078587663874638379473081048027} a^{18} - \frac{1462874050769894232226455221093473100092282659068}{40066491298918633482885075427042704711064874982651} a^{17} + \frac{484354453706857354890189986304224891516631117543301}{10270377269622809716112874334465279974269629620552873} a^{16} + \frac{645283242878364153556392593478133607275832984621686}{30811131808868429148338623003395839922808888861658619} a^{15} - \frac{40769866974929472425767125370989935255517523940149}{10270377269622809716112874334465279974269629620552873} a^{14} - \frac{56710692272391945600994229469458684529838753950428}{3423459089874269905370958111488426658089876540184291} a^{13} - \frac{510118944945460713540308294568612845084212265870063}{10270377269622809716112874334465279974269629620552873} a^{12} + \frac{4948812671471309178609520031045800598952680591102489}{30811131808868429148338623003395839922808888861658619} a^{11} - \frac{2750517200465797559917446363745094425915822627864561}{30811131808868429148338623003395839922808888861658619} a^{10} - \frac{3179674884089827628820617052175083429994138418443660}{30811131808868429148338623003395839922808888861658619} a^{9} - \frac{3057081350883532745760221915979446599561037012524394}{30811131808868429148338623003395839922808888861658619} a^{8} + \frac{3291006153100760338189253769426602509853366144281259}{30811131808868429148338623003395839922808888861658619} a^{7} + \frac{1988762185946762943583487582756150917616180647005793}{30811131808868429148338623003395839922808888861658619} a^{6} - \frac{2169792775974944746896950443708921806668060078059078}{10270377269622809716112874334465279974269629620552873} a^{5} - \frac{12455768136746039558174650695542424882937170648589418}{30811131808868429148338623003395839922808888861658619} a^{4} - \frac{3476795396695365614539593479334784743888426414087371}{10270377269622809716112874334465279974269629620552873} a^{3} + \frac{6007773850087540461787491149169512324402324625025102}{30811131808868429148338623003395839922808888861658619} a^{2} - \frac{644873942191610403116913472613334862526108762606854}{3423459089874269905370958111488426658089876540184291} a - \frac{143108738111988648358380523380064546976040814610789}{317640534112045661323078587663874638379473081048027}$
Class group and class number
$C_{9}\times C_{157698}$, which has order $1419282$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39019312.21180779 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{16})^+\), 6.6.1229312.1, 8.0.173946175488.1, 12.12.49519263525896192.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $24$ | R | $24$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | $24$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | $24$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |