Normalized defining polynomial
\( x^{24} + 7 x^{22} + 33 x^{20} + 119 x^{18} + 305 x^{16} + 231 x^{14} - 3263 x^{12} + 3696 x^{10} + 78080 x^{8} + 487424 x^{6} + 2162688 x^{4} + 7340032 x^{2} + 16777216 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(173690395826049922758414336000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(389,·)$, $\chi_{420}(391,·)$, $\chi_{420}(331,·)$, $\chi_{420}(269,·)$, $\chi_{420}(271,·)$, $\chi_{420}(209,·)$, $\chi_{420}(211,·)$, $\chi_{420}(149,·)$, $\chi_{420}(151,·)$, $\chi_{420}(89,·)$, $\chi_{420}(29,·)$, $\chi_{420}(31,·)$, $\chi_{420}(419,·)$, $\chi_{420}(359,·)$, $\chi_{420}(361,·)$, $\chi_{420}(299,·)$, $\chi_{420}(239,·)$, $\chi_{420}(241,·)$, $\chi_{420}(179,·)$, $\chi_{420}(181,·)$, $\chi_{420}(121,·)$, $\chi_{420}(59,·)$, $\chi_{420}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{52208} a^{14} - \frac{7}{16} a^{12} - \frac{1}{16} a^{10} - \frac{7}{16} a^{8} - \frac{1}{16} a^{6} - \frac{7}{16} a^{4} - \frac{1}{16} a^{2} + \frac{231}{3263}$, $\frac{1}{208832} a^{15} - \frac{7}{64} a^{13} + \frac{31}{64} a^{11} + \frac{9}{64} a^{9} + \frac{15}{64} a^{7} + \frac{25}{64} a^{5} - \frac{1}{64} a^{3} + \frac{231}{13052} a$, $\frac{1}{835328} a^{16} + \frac{7}{835328} a^{14} + \frac{31}{256} a^{12} + \frac{73}{256} a^{10} + \frac{15}{256} a^{8} - \frac{39}{256} a^{6} - \frac{1}{256} a^{4} + \frac{231}{52208} a^{2} + \frac{305}{3263}$, $\frac{1}{3341312} a^{17} + \frac{7}{3341312} a^{15} + \frac{31}{1024} a^{13} + \frac{329}{1024} a^{11} - \frac{241}{1024} a^{9} + \frac{217}{1024} a^{7} + \frac{255}{1024} a^{5} - \frac{51977}{208832} a^{3} + \frac{892}{3263} a$, $\frac{1}{13365248} a^{18} + \frac{7}{13365248} a^{16} + \frac{33}{13365248} a^{14} + \frac{585}{4096} a^{12} - \frac{497}{4096} a^{10} - \frac{551}{4096} a^{8} - \frac{1}{4096} a^{6} + \frac{231}{835328} a^{4} + \frac{305}{52208} a^{2} + \frac{119}{3263}$, $\frac{1}{53460992} a^{19} + \frac{7}{53460992} a^{17} + \frac{33}{53460992} a^{15} + \frac{585}{16384} a^{13} + \frac{7695}{16384} a^{11} - \frac{4647}{16384} a^{9} + \frac{8191}{16384} a^{7} - \frac{1670425}{3341312} a^{5} - \frac{104111}{208832} a^{3} - \frac{6407}{13052} a$, $\frac{1}{213843968} a^{20} + \frac{7}{213843968} a^{18} + \frac{33}{213843968} a^{16} + \frac{119}{213843968} a^{14} + \frac{15887}{65536} a^{12} - \frac{29223}{65536} a^{10} - \frac{1}{65536} a^{8} + \frac{231}{13365248} a^{6} + \frac{305}{835328} a^{4} + \frac{119}{52208} a^{2} + \frac{33}{3263}$, $\frac{1}{855375872} a^{21} + \frac{7}{855375872} a^{19} + \frac{33}{855375872} a^{17} + \frac{119}{855375872} a^{15} + \frac{15887}{262144} a^{13} - \frac{29223}{262144} a^{11} + \frac{65535}{262144} a^{9} - \frac{13365017}{53460992} a^{7} + \frac{835633}{3341312} a^{5} - \frac{52089}{208832} a^{3} + \frac{824}{3263} a$, $\frac{1}{3421503488} a^{22} + \frac{7}{3421503488} a^{20} + \frac{33}{3421503488} a^{18} + \frac{119}{3421503488} a^{16} + \frac{305}{3421503488} a^{14} + \frac{36313}{1048576} a^{12} - \frac{1}{1048576} a^{10} + \frac{231}{213843968} a^{8} + \frac{305}{13365248} a^{6} + \frac{119}{835328} a^{4} + \frac{33}{52208} a^{2} + \frac{7}{3263}$, $\frac{1}{13686013952} a^{23} + \frac{7}{13686013952} a^{21} + \frac{33}{13686013952} a^{19} + \frac{119}{13686013952} a^{17} + \frac{305}{13686013952} a^{15} + \frac{36313}{4194304} a^{13} + \frac{1048575}{4194304} a^{11} - \frac{213843737}{855375872} a^{9} + \frac{13365553}{53460992} a^{7} - \frac{835209}{3341312} a^{5} + \frac{52241}{208832} a^{3} - \frac{814}{3263} a$
Class group and class number
$C_{2}\times C_{52}$, which has order $104$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{171}{855375872} a^{23} + \frac{3859123}{855375872} a^{9} \) (order $28$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 233161229.71468583 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |