Normalized defining polynomial
\( x^{24} + 27 x^{22} + 319 x^{20} + 2149 x^{18} + 8972 x^{16} + 23396 x^{14} + 35678 x^{12} + 24935 x^{10} - 3091 x^{8} - 25424 x^{6} - 71174 x^{4} - 54588 x^{2} + 177241 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(173690395826049922758414336000000000000=2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(389,·)$, $\chi_{420}(341,·)$, $\chi_{420}(391,·)$, $\chi_{420}(11,·)$, $\chi_{420}(271,·)$, $\chi_{420}(149,·)$, $\chi_{420}(409,·)$, $\chi_{420}(71,·)$, $\chi_{420}(79,·)$, $\chi_{420}(29,·)$, $\chi_{420}(31,·)$, $\chi_{420}(419,·)$, $\chi_{420}(101,·)$, $\chi_{420}(379,·)$, $\chi_{420}(41,·)$, $\chi_{420}(299,·)$, $\chi_{420}(191,·)$, $\chi_{420}(349,·)$, $\chi_{420}(229,·)$, $\chi_{420}(361,·)$, $\chi_{420}(121,·)$, $\chi_{420}(59,·)$, $\chi_{420}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{377} a^{14} + \frac{14}{377} a^{12} + \frac{77}{377} a^{10} - \frac{167}{377} a^{8} - \frac{83}{377} a^{6} - \frac{181}{377} a^{4} + \frac{49}{377} a^{2} + \frac{146}{377}$, $\frac{1}{377} a^{15} + \frac{14}{377} a^{13} + \frac{77}{377} a^{11} - \frac{167}{377} a^{9} - \frac{83}{377} a^{7} - \frac{181}{377} a^{5} + \frac{49}{377} a^{3} + \frac{146}{377} a$, $\frac{1}{377} a^{16} - \frac{119}{377} a^{12} - \frac{114}{377} a^{10} - \frac{7}{377} a^{8} - \frac{150}{377} a^{6} - \frac{56}{377} a^{4} - \frac{163}{377} a^{2} - \frac{159}{377}$, $\frac{1}{377} a^{17} - \frac{119}{377} a^{13} - \frac{114}{377} a^{11} - \frac{7}{377} a^{9} - \frac{150}{377} a^{7} - \frac{56}{377} a^{5} - \frac{163}{377} a^{3} - \frac{159}{377} a$, $\frac{1}{3016} a^{18} + \frac{1}{1508} a^{16} - \frac{1}{3016} a^{14} - \frac{103}{232} a^{12} - \frac{197}{3016} a^{10} + \frac{61}{377} a^{8} - \frac{25}{104} a^{6} - \frac{1275}{3016} a^{4} + \frac{575}{1508} a^{2} + \frac{1453}{3016}$, $\frac{1}{1269736} a^{19} - \frac{571}{634868} a^{17} + \frac{1343}{1269736} a^{15} - \frac{21743}{43784} a^{13} + \frac{532291}{1269736} a^{11} + \frac{43128}{158717} a^{9} + \frac{228219}{1269736} a^{7} + \frac{329229}{1269736} a^{5} - \frac{153749}{634868} a^{3} + \frac{295125}{1269736} a$, $\frac{1}{267914296} a^{20} - \frac{5773}{267914296} a^{18} - \frac{209999}{267914296} a^{16} + \frac{23709}{66978574} a^{14} + \frac{2728151}{33489287} a^{12} - \frac{34483885}{267914296} a^{10} - \frac{107015637}{267914296} a^{8} - \frac{6243587}{33489287} a^{6} + \frac{130246707}{267914296} a^{4} + \frac{122902955}{267914296} a^{2} + \frac{114249}{636376}$, $\frac{1}{267914296} a^{21} - \frac{19}{66978574} a^{19} - \frac{320141}{267914296} a^{17} - \frac{71221}{267914296} a^{15} + \frac{113598181}{267914296} a^{13} + \frac{29724231}{133957148} a^{11} - \frac{95695909}{267914296} a^{9} - \frac{131995413}{267914296} a^{7} + \frac{498020}{1154803} a^{5} - \frac{107415783}{267914296} a^{3} + \frac{53508285}{133957148} a$, $\frac{1}{267914296} a^{22} + \frac{20295}{133957148} a^{18} - \frac{219227}{267914296} a^{16} - \frac{46637}{133957148} a^{14} - \frac{45930559}{267914296} a^{12} - \frac{19569825}{66978574} a^{10} + \frac{25946391}{267914296} a^{8} + \frac{93247117}{267914296} a^{6} - \frac{3050340}{33489287} a^{4} + \frac{95427}{1154803} a^{2} + \frac{61675}{636376}$, $\frac{1}{267914296} a^{23} + \frac{3}{10304396} a^{19} - \frac{146643}{267914296} a^{17} + \frac{109503}{133957148} a^{15} - \frac{120070895}{267914296} a^{13} - \frac{26743825}{66978574} a^{11} + \frac{6171471}{267914296} a^{9} - \frac{67436979}{267914296} a^{7} - \frac{6283704}{33489287} a^{5} - \frac{10328332}{33489287} a^{3} - \frac{79372777}{267914296} a$
Class group and class number
$C_{2}\times C_{156}$, which has order $312$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4345227.172827557 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |