Properties

Label 24.0.170...376.2
Degree $24$
Signature $[0, 12]$
Discriminant $1.704\times 10^{45}$
Root discriminant \(76.67\)
Ramified primes $2,3,7,23$
Class number $1920$ (GRH)
Class group [2, 4, 240] (GRH)
Galois group $C_2^2\times D_6$ (as 24T30)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 78*x^22 + 2421*x^20 + 39474*x^18 + 376092*x^16 + 2183742*x^14 + 7748525*x^12 + 16261674*x^10 + 18591153*x^8 + 9415392*x^6 + 875496*x^4 + 15840*x^2 + 16)
 
gp: K = bnfinit(y^24 + 78*y^22 + 2421*y^20 + 39474*y^18 + 376092*y^16 + 2183742*y^14 + 7748525*y^12 + 16261674*y^10 + 18591153*y^8 + 9415392*y^6 + 875496*y^4 + 15840*y^2 + 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 + 78*x^22 + 2421*x^20 + 39474*x^18 + 376092*x^16 + 2183742*x^14 + 7748525*x^12 + 16261674*x^10 + 18591153*x^8 + 9415392*x^6 + 875496*x^4 + 15840*x^2 + 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 + 78*x^22 + 2421*x^20 + 39474*x^18 + 376092*x^16 + 2183742*x^14 + 7748525*x^12 + 16261674*x^10 + 18591153*x^8 + 9415392*x^6 + 875496*x^4 + 15840*x^2 + 16)
 

\( x^{24} + 78 x^{22} + 2421 x^{20} + 39474 x^{18} + 376092 x^{16} + 2183742 x^{14} + 7748525 x^{12} + \cdots + 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1704017867935867218637163902534560973508837376\) \(\medspace = 2^{36}\cdot 3^{28}\cdot 7^{12}\cdot 23^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(76.67\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3/2}3^{7/6}7^{1/2}23^{1/2}\approx 129.30025916061993$
Ramified primes:   \(2\), \(3\), \(7\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4}a^{8}-\frac{1}{2}a^{5}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{6}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{10}-\frac{1}{2}a^{7}+\frac{1}{4}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{11}+\frac{1}{4}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{12}+\frac{1}{4}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{13}+\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}$, $\frac{1}{4}a^{14}-\frac{1}{2}a^{6}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{7}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{32}a^{16}-\frac{1}{8}a^{15}-\frac{1}{8}a^{14}-\frac{1}{16}a^{10}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{6}-\frac{1}{2}a^{5}-\frac{15}{32}a^{4}-\frac{3}{8}a^{3}-\frac{1}{2}a^{2}-\frac{1}{4}a+\frac{3}{8}$, $\frac{1}{64}a^{17}+\frac{1}{16}a^{15}-\frac{1}{8}a^{14}+\frac{3}{32}a^{11}+\frac{1}{16}a^{9}+\frac{3}{8}a^{7}+\frac{1}{4}a^{6}+\frac{9}{64}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+\frac{1}{8}a^{2}+\frac{3}{16}a-\frac{1}{4}$, $\frac{1}{128}a^{18}-\frac{1}{64}a^{16}-\frac{1}{16}a^{14}-\frac{5}{64}a^{12}-\frac{1}{8}a^{8}-\frac{1}{2}a^{7}-\frac{23}{128}a^{6}+\frac{5}{64}a^{4}-\frac{1}{2}a^{3}-\frac{5}{32}a^{2}-\frac{1}{2}a-\frac{1}{16}$, $\frac{1}{128}a^{19}-\frac{1}{8}a^{14}-\frac{5}{64}a^{13}+\frac{3}{32}a^{11}-\frac{1}{16}a^{9}+\frac{25}{128}a^{7}+\frac{1}{4}a^{6}+\frac{7}{32}a^{5}+\frac{11}{32}a^{3}+\frac{1}{8}a^{2}+\frac{1}{8}a-\frac{1}{4}$, $\frac{1}{17210624}a^{20}-\frac{1}{256}a^{19}+\frac{73}{108928}a^{18}-\frac{1}{128}a^{17}+\frac{4537}{2151328}a^{16}-\frac{1}{32}a^{15}+\frac{18141}{374144}a^{14}-\frac{11}{128}a^{13}-\frac{8713}{537832}a^{12}-\frac{3}{32}a^{11}+\frac{55997}{1075664}a^{10}+\frac{1824649}{17210624}a^{8}+\frac{23}{256}a^{7}+\frac{54477}{8605312}a^{6}-\frac{55}{128}a^{5}+\frac{2079439}{4302656}a^{4}-\frac{27}{64}a^{3}-\frac{437901}{2151328}a^{2}-\frac{5}{32}a-\frac{52485}{134458}$, $\frac{1}{17210624}a^{21}-\frac{705}{217856}a^{19}-\frac{49081}{8605312}a^{17}-\frac{40319}{374144}a^{15}-\frac{1}{8}a^{14}-\frac{878927}{8605312}a^{13}-\frac{89693}{2151328}a^{11}+\frac{1824649}{17210624}a^{9}-\frac{2647435}{17210624}a^{7}-\frac{1}{4}a^{6}+\frac{461283}{8605312}a^{5}+\frac{2149503}{4302656}a^{3}-\frac{3}{8}a^{2}+\frac{437591}{2151328}a+\frac{1}{4}$, $\frac{1}{67\!\cdots\!12}a^{22}+\frac{907922540371}{67\!\cdots\!12}a^{20}-\frac{1}{256}a^{19}+\frac{29\!\cdots\!37}{16\!\cdots\!28}a^{18}-\frac{1}{128}a^{17}-\frac{47\!\cdots\!43}{33\!\cdots\!56}a^{16}-\frac{1}{32}a^{15}+\frac{36\!\cdots\!07}{33\!\cdots\!56}a^{14}-\frac{11}{128}a^{13}-\frac{81\!\cdots\!39}{16\!\cdots\!28}a^{12}-\frac{3}{32}a^{11}+\frac{25\!\cdots\!53}{67\!\cdots\!12}a^{10}-\frac{59\!\cdots\!85}{67\!\cdots\!12}a^{8}+\frac{23}{256}a^{7}+\frac{13\!\cdots\!53}{16\!\cdots\!28}a^{6}-\frac{55}{128}a^{5}-\frac{31\!\cdots\!45}{21\!\cdots\!16}a^{4}+\frac{5}{64}a^{3}+\frac{77\!\cdots\!79}{21\!\cdots\!16}a^{2}-\frac{5}{32}a+\frac{50\!\cdots\!57}{42\!\cdots\!32}$, $\frac{1}{13\!\cdots\!24}a^{23}-\frac{1}{13\!\cdots\!24}a^{22}-\frac{3012355647067}{13\!\cdots\!24}a^{21}+\frac{3012355647067}{13\!\cdots\!24}a^{20}-\frac{11\!\cdots\!87}{33\!\cdots\!56}a^{19}-\frac{571852107486827}{10\!\cdots\!08}a^{18}-\frac{19\!\cdots\!63}{67\!\cdots\!12}a^{17}+\frac{54\!\cdots\!67}{67\!\cdots\!12}a^{16}+\frac{40\!\cdots\!89}{67\!\cdots\!12}a^{15}+\frac{64\!\cdots\!91}{67\!\cdots\!12}a^{14}+\frac{15\!\cdots\!23}{33\!\cdots\!56}a^{13}+\frac{40\!\cdots\!19}{33\!\cdots\!56}a^{12}-\frac{99\!\cdots\!23}{13\!\cdots\!24}a^{11}+\frac{99\!\cdots\!23}{13\!\cdots\!24}a^{10}-\frac{46\!\cdots\!83}{13\!\cdots\!24}a^{9}+\frac{13\!\cdots\!47}{13\!\cdots\!24}a^{8}+\frac{42\!\cdots\!63}{33\!\cdots\!56}a^{7}-\frac{27\!\cdots\!11}{16\!\cdots\!28}a^{6}+\frac{60\!\cdots\!47}{42\!\cdots\!32}a^{5}+\frac{11\!\cdots\!89}{16\!\cdots\!28}a^{4}+\frac{38\!\cdots\!79}{10\!\cdots\!08}a^{3}+\frac{74\!\cdots\!47}{84\!\cdots\!64}a^{2}-\frac{18\!\cdots\!33}{84\!\cdots\!64}a+\frac{41\!\cdots\!51}{84\!\cdots\!64}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{4}\times C_{240}$, which has order $1920$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -\frac{16977928905}{7138430691584} a^{23} - \frac{41382739415}{223075959112} a^{21} - \frac{41101133468325}{7138430691584} a^{19} - \frac{167527454174045}{1784607672896} a^{17} - \frac{1595993229742529}{1784607672896} a^{15} - \frac{18531310168497875}{3569215345792} a^{13} - \frac{131475329590063473}{7138430691584} a^{11} - \frac{68947123119872755}{1784607672896} a^{9} - \frac{13693015972127631}{310366551808} a^{7} - \frac{79471318513897261}{3569215345792} a^{5} - \frac{3580909509496679}{1784607672896} a^{3} - \frac{25489141306319}{892303836448} a + \frac{1}{2} \)  (order $6$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{423404988277887}{85\!\cdots\!28}a^{23}+\frac{32\!\cdots\!79}{85\!\cdots\!28}a^{21}+\frac{12\!\cdots\!15}{10\!\cdots\!16}a^{19}+\frac{83\!\cdots\!11}{42\!\cdots\!64}a^{17}+\frac{79\!\cdots\!11}{42\!\cdots\!64}a^{15}+\frac{22\!\cdots\!91}{21\!\cdots\!32}a^{13}+\frac{32\!\cdots\!27}{85\!\cdots\!28}a^{11}+\frac{66\!\cdots\!27}{85\!\cdots\!28}a^{9}+\frac{20\!\cdots\!29}{23\!\cdots\!96}a^{7}+\frac{43\!\cdots\!73}{10\!\cdots\!16}a^{5}+\frac{64\!\cdots\!05}{53\!\cdots\!08}a^{3}-\frac{73\!\cdots\!89}{53\!\cdots\!08}a$, $\frac{41\!\cdots\!15}{33\!\cdots\!56}a^{23}-\frac{3940387}{22381668224}a^{22}+\frac{81\!\cdots\!15}{84\!\cdots\!64}a^{21}-\frac{153630661}{11190834112}a^{20}+\frac{10\!\cdots\!19}{33\!\cdots\!56}a^{19}-\frac{9532921237}{22381668224}a^{18}+\frac{41\!\cdots\!71}{84\!\cdots\!64}a^{17}-\frac{19417655015}{2797708528}a^{16}+\frac{39\!\cdots\!05}{84\!\cdots\!64}a^{15}-\frac{184856597939}{2797708528}a^{14}+\frac{45\!\cdots\!17}{16\!\cdots\!28}a^{13}-\frac{4288945569495}{11190834112}a^{12}+\frac{32\!\cdots\!59}{33\!\cdots\!56}a^{11}-\frac{30397069709563}{22381668224}a^{10}+\frac{52\!\cdots\!05}{26\!\cdots\!02}a^{9}-\frac{31849594502383}{11190834112}a^{8}+\frac{33\!\cdots\!09}{14\!\cdots\!72}a^{7}-\frac{72728437018777}{22381668224}a^{6}+\frac{19\!\cdots\!99}{16\!\cdots\!28}a^{5}-\frac{18402326664749}{11190834112}a^{4}+\frac{82\!\cdots\!49}{84\!\cdots\!64}a^{3}-\frac{847601185687}{5595417056}a^{2}+\frac{24\!\cdots\!61}{42\!\cdots\!32}a+\frac{320629461}{2797708528}$, $\frac{19654750614585}{45\!\cdots\!88}a^{22}+\frac{15\!\cdots\!57}{45\!\cdots\!88}a^{20}+\frac{185761494720595}{17\!\cdots\!98}a^{18}+\frac{38\!\cdots\!69}{22\!\cdots\!44}a^{16}+\frac{36\!\cdots\!45}{22\!\cdots\!44}a^{14}+\frac{10\!\cdots\!33}{11\!\cdots\!72}a^{12}+\frac{15\!\cdots\!81}{45\!\cdots\!88}a^{10}+\frac{31\!\cdots\!93}{45\!\cdots\!88}a^{8}+\frac{43\!\cdots\!19}{56\!\cdots\!36}a^{6}+\frac{20\!\cdots\!59}{56\!\cdots\!36}a^{4}+\frac{22\!\cdots\!61}{28\!\cdots\!68}a^{2}-\frac{38\!\cdots\!83}{28\!\cdots\!68}$, $\frac{82\!\cdots\!25}{16\!\cdots\!28}a^{23}+\frac{13538546485901}{45\!\cdots\!88}a^{22}+\frac{64\!\cdots\!61}{16\!\cdots\!28}a^{21}+\frac{10\!\cdots\!79}{45\!\cdots\!88}a^{20}+\frac{39\!\cdots\!97}{33\!\cdots\!56}a^{19}+\frac{82\!\cdots\!11}{11\!\cdots\!72}a^{18}+\frac{32\!\cdots\!01}{16\!\cdots\!28}a^{17}+\frac{27\!\cdots\!45}{22\!\cdots\!44}a^{16}+\frac{15\!\cdots\!47}{84\!\cdots\!64}a^{15}+\frac{26\!\cdots\!91}{22\!\cdots\!44}a^{14}+\frac{18\!\cdots\!07}{16\!\cdots\!28}a^{13}+\frac{77\!\cdots\!09}{11\!\cdots\!72}a^{12}+\frac{64\!\cdots\!17}{16\!\cdots\!28}a^{11}+\frac{11\!\cdots\!37}{45\!\cdots\!88}a^{10}+\frac{13\!\cdots\!57}{16\!\cdots\!28}a^{9}+\frac{24\!\cdots\!63}{45\!\cdots\!88}a^{8}+\frac{13\!\cdots\!91}{14\!\cdots\!72}a^{7}+\frac{73\!\cdots\!91}{11\!\cdots\!72}a^{6}+\frac{81\!\cdots\!65}{16\!\cdots\!28}a^{5}+\frac{65\!\cdots\!69}{17\!\cdots\!98}a^{4}+\frac{43\!\cdots\!79}{84\!\cdots\!64}a^{3}+\frac{21\!\cdots\!73}{35\!\cdots\!96}a^{2}-\frac{13\!\cdots\!09}{42\!\cdots\!32}a+\frac{38\!\cdots\!45}{28\!\cdots\!68}$, $\frac{29\!\cdots\!03}{84\!\cdots\!64}a^{23}+\frac{13\!\cdots\!85}{84\!\cdots\!64}a^{22}+\frac{23\!\cdots\!93}{84\!\cdots\!64}a^{21}+\frac{12\!\cdots\!93}{10\!\cdots\!08}a^{20}+\frac{71\!\cdots\!37}{84\!\cdots\!64}a^{19}+\frac{32\!\cdots\!91}{84\!\cdots\!64}a^{18}+\frac{11\!\cdots\!61}{84\!\cdots\!64}a^{17}+\frac{26\!\cdots\!01}{42\!\cdots\!32}a^{16}+\frac{55\!\cdots\!79}{42\!\cdots\!32}a^{15}+\frac{12\!\cdots\!01}{21\!\cdots\!16}a^{14}+\frac{32\!\cdots\!17}{42\!\cdots\!32}a^{13}+\frac{15\!\cdots\!73}{42\!\cdots\!32}a^{12}+\frac{22\!\cdots\!73}{84\!\cdots\!64}a^{11}+\frac{10\!\cdots\!97}{84\!\cdots\!64}a^{10}+\frac{48\!\cdots\!41}{84\!\cdots\!64}a^{9}+\frac{58\!\cdots\!83}{21\!\cdots\!16}a^{8}+\frac{55\!\cdots\!45}{84\!\cdots\!64}a^{7}+\frac{27\!\cdots\!27}{84\!\cdots\!64}a^{6}+\frac{27\!\cdots\!39}{84\!\cdots\!64}a^{5}+\frac{45\!\cdots\!83}{26\!\cdots\!02}a^{4}+\frac{64\!\cdots\!85}{21\!\cdots\!16}a^{3}+\frac{33\!\cdots\!23}{21\!\cdots\!16}a^{2}+\frac{10\!\cdots\!57}{21\!\cdots\!16}a+\frac{15\!\cdots\!99}{52\!\cdots\!04}$, $\frac{98\!\cdots\!49}{13\!\cdots\!24}a^{23}+\frac{54\!\cdots\!95}{13\!\cdots\!24}a^{22}+\frac{77\!\cdots\!41}{13\!\cdots\!24}a^{21}+\frac{42\!\cdots\!63}{13\!\cdots\!24}a^{20}+\frac{59\!\cdots\!27}{33\!\cdots\!56}a^{19}+\frac{82\!\cdots\!83}{84\!\cdots\!64}a^{18}+\frac{19\!\cdots\!73}{67\!\cdots\!12}a^{17}+\frac{10\!\cdots\!51}{67\!\cdots\!12}a^{16}+\frac{18\!\cdots\!05}{67\!\cdots\!12}a^{15}+\frac{10\!\cdots\!39}{67\!\cdots\!12}a^{14}+\frac{23\!\cdots\!17}{14\!\cdots\!72}a^{13}+\frac{29\!\cdots\!11}{33\!\cdots\!56}a^{12}+\frac{33\!\cdots\!43}{58\!\cdots\!88}a^{11}+\frac{42\!\cdots\!91}{13\!\cdots\!24}a^{10}+\frac{16\!\cdots\!77}{13\!\cdots\!24}a^{9}+\frac{88\!\cdots\!95}{13\!\cdots\!24}a^{8}+\frac{45\!\cdots\!29}{33\!\cdots\!56}a^{7}+\frac{12\!\cdots\!99}{16\!\cdots\!28}a^{6}+\frac{58\!\cdots\!17}{84\!\cdots\!64}a^{5}+\frac{63\!\cdots\!13}{16\!\cdots\!28}a^{4}+\frac{26\!\cdots\!07}{42\!\cdots\!32}a^{3}+\frac{28\!\cdots\!79}{84\!\cdots\!64}a^{2}+\frac{91\!\cdots\!83}{84\!\cdots\!64}a+\frac{51\!\cdots\!63}{84\!\cdots\!64}$, $\frac{28\!\cdots\!37}{33\!\cdots\!56}a^{23}+\frac{21\!\cdots\!39}{33\!\cdots\!56}a^{21}+\frac{33\!\cdots\!47}{16\!\cdots\!28}a^{19}+\frac{55\!\cdots\!23}{16\!\cdots\!28}a^{17}+\frac{52\!\cdots\!23}{16\!\cdots\!28}a^{15}+\frac{38\!\cdots\!13}{21\!\cdots\!16}a^{13}+\frac{21\!\cdots\!73}{33\!\cdots\!56}a^{11}+\frac{45\!\cdots\!87}{33\!\cdots\!56}a^{9}+\frac{11\!\cdots\!41}{73\!\cdots\!36}a^{7}+\frac{67\!\cdots\!65}{84\!\cdots\!64}a^{5}+\frac{33\!\cdots\!95}{42\!\cdots\!32}a^{3}+\frac{23\!\cdots\!17}{13\!\cdots\!51}a$, $\frac{13\!\cdots\!61}{33\!\cdots\!56}a^{23}-\frac{38\!\cdots\!15}{16\!\cdots\!28}a^{22}+\frac{52\!\cdots\!21}{16\!\cdots\!28}a^{21}-\frac{30\!\cdots\!63}{16\!\cdots\!28}a^{20}+\frac{32\!\cdots\!87}{33\!\cdots\!56}a^{19}-\frac{12\!\cdots\!07}{22\!\cdots\!48}a^{18}+\frac{32\!\cdots\!03}{21\!\cdots\!16}a^{17}-\frac{74\!\cdots\!95}{84\!\cdots\!64}a^{16}+\frac{15\!\cdots\!33}{10\!\cdots\!08}a^{15}-\frac{70\!\cdots\!83}{84\!\cdots\!64}a^{14}+\frac{14\!\cdots\!29}{16\!\cdots\!28}a^{13}-\frac{19\!\cdots\!83}{42\!\cdots\!32}a^{12}+\frac{10\!\cdots\!25}{33\!\cdots\!56}a^{11}-\frac{27\!\cdots\!39}{16\!\cdots\!28}a^{10}+\frac{10\!\cdots\!71}{16\!\cdots\!28}a^{9}-\frac{55\!\cdots\!99}{16\!\cdots\!28}a^{8}+\frac{24\!\cdots\!03}{33\!\cdots\!56}a^{7}-\frac{75\!\cdots\!09}{21\!\cdots\!16}a^{6}+\frac{62\!\cdots\!47}{16\!\cdots\!28}a^{5}-\frac{36\!\cdots\!29}{21\!\cdots\!16}a^{4}+\frac{28\!\cdots\!09}{84\!\cdots\!64}a^{3}-\frac{89\!\cdots\!41}{45\!\cdots\!96}a^{2}+\frac{24\!\cdots\!09}{42\!\cdots\!32}a-\frac{34\!\cdots\!95}{10\!\cdots\!08}$, $\frac{25664562160333}{56\!\cdots\!36}a^{22}+\frac{250388646982603}{70\!\cdots\!92}a^{20}+\frac{31\!\cdots\!11}{28\!\cdots\!68}a^{18}+\frac{50\!\cdots\!09}{28\!\cdots\!68}a^{16}+\frac{24\!\cdots\!99}{14\!\cdots\!84}a^{14}+\frac{14\!\cdots\!75}{14\!\cdots\!84}a^{12}+\frac{19\!\cdots\!69}{56\!\cdots\!36}a^{10}+\frac{10\!\cdots\!53}{14\!\cdots\!84}a^{8}+\frac{23\!\cdots\!89}{28\!\cdots\!68}a^{6}+\frac{58\!\cdots\!31}{14\!\cdots\!84}a^{4}+\frac{21\!\cdots\!65}{70\!\cdots\!92}a^{2}+\frac{406372176616957}{35\!\cdots\!96}$, $\frac{38\!\cdots\!63}{13\!\cdots\!24}a^{23}-\frac{37\!\cdots\!95}{13\!\cdots\!24}a^{22}+\frac{30\!\cdots\!39}{13\!\cdots\!24}a^{21}-\frac{29\!\cdots\!43}{13\!\cdots\!24}a^{20}+\frac{23\!\cdots\!55}{33\!\cdots\!56}a^{19}-\frac{56\!\cdots\!55}{84\!\cdots\!64}a^{18}+\frac{76\!\cdots\!99}{67\!\cdots\!12}a^{17}-\frac{73\!\cdots\!99}{67\!\cdots\!12}a^{16}+\frac{72\!\cdots\!83}{67\!\cdots\!12}a^{15}-\frac{69\!\cdots\!71}{67\!\cdots\!12}a^{14}+\frac{20\!\cdots\!33}{33\!\cdots\!56}a^{13}-\frac{20\!\cdots\!35}{33\!\cdots\!56}a^{12}+\frac{29\!\cdots\!63}{13\!\cdots\!24}a^{11}-\frac{28\!\cdots\!39}{13\!\cdots\!24}a^{10}+\frac{59\!\cdots\!55}{13\!\cdots\!24}a^{9}-\frac{60\!\cdots\!95}{13\!\cdots\!24}a^{8}+\frac{16\!\cdots\!25}{33\!\cdots\!56}a^{7}-\frac{84\!\cdots\!83}{16\!\cdots\!28}a^{6}+\frac{41\!\cdots\!43}{21\!\cdots\!16}a^{5}-\frac{39\!\cdots\!65}{16\!\cdots\!28}a^{4}-\frac{28\!\cdots\!57}{21\!\cdots\!16}a^{3}-\frac{39\!\cdots\!63}{84\!\cdots\!64}a^{2}-\frac{25\!\cdots\!91}{84\!\cdots\!64}a-\frac{17\!\cdots\!91}{84\!\cdots\!64}$, $\frac{16\!\cdots\!95}{67\!\cdots\!12}a^{22}+\frac{12\!\cdots\!39}{67\!\cdots\!12}a^{20}+\frac{12\!\cdots\!77}{21\!\cdots\!16}a^{18}+\frac{31\!\cdots\!07}{33\!\cdots\!56}a^{16}+\frac{29\!\cdots\!07}{33\!\cdots\!56}a^{14}+\frac{81\!\cdots\!15}{16\!\cdots\!28}a^{12}+\frac{11\!\cdots\!59}{67\!\cdots\!12}a^{10}+\frac{21\!\cdots\!31}{67\!\cdots\!12}a^{8}+\frac{27\!\cdots\!19}{84\!\cdots\!64}a^{6}+\frac{31\!\cdots\!53}{22\!\cdots\!72}a^{4}+\frac{49\!\cdots\!79}{42\!\cdots\!32}a^{2}+\frac{74\!\cdots\!91}{42\!\cdots\!32}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 43654858009.901855 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 43654858009.901855 \cdot 1920}{6\cdot\sqrt{1704017867935867218637163902534560973508837376}}\cr\approx \mathstrut & 1.28116158011097 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 + 78*x^22 + 2421*x^20 + 39474*x^18 + 376092*x^16 + 2183742*x^14 + 7748525*x^12 + 16261674*x^10 + 18591153*x^8 + 9415392*x^6 + 875496*x^4 + 15840*x^2 + 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 + 78*x^22 + 2421*x^20 + 39474*x^18 + 376092*x^16 + 2183742*x^14 + 7748525*x^12 + 16261674*x^10 + 18591153*x^8 + 9415392*x^6 + 875496*x^4 + 15840*x^2 + 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 + 78*x^22 + 2421*x^20 + 39474*x^18 + 376092*x^16 + 2183742*x^14 + 7748525*x^12 + 16261674*x^10 + 18591153*x^8 + 9415392*x^6 + 875496*x^4 + 15840*x^2 + 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 + 78*x^22 + 2421*x^20 + 39474*x^18 + 376092*x^16 + 2183742*x^14 + 7748525*x^12 + 16261674*x^10 + 18591153*x^8 + 9415392*x^6 + 875496*x^4 + 15840*x^2 + 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^2\times D_6$ (as 24T30):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 48
The 24 conjugacy class representatives for $C_2^2\times D_6$
Character table for $C_2^2\times D_6$ is not computed

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-42}) \), 3.3.621.1, \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-3}, \sqrt{14})\), \(\Q(\sqrt{-2}, \sqrt{21})\), 6.6.67724729856.1, 6.0.197448192.7, 6.6.396824589.1, 6.0.1156923.1, 6.0.132274863.5, 6.6.592344576.1, 6.0.203174189568.4, 8.0.796594176.1, 12.0.41279751306613600026624.4, 12.0.4586639034068177780736.1, 12.0.157469754435018921.1, 12.12.41279751306613600026624.2, 12.0.350872096716619776.1, 12.0.41279751306613600026624.3, 12.0.41279751306613600026624.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{4}$ R ${\href{/padicField/11.6.0.1}{6} }^{4}$ ${\href{/padicField/13.6.0.1}{6} }^{4}$ ${\href{/padicField/17.6.0.1}{6} }^{4}$ ${\href{/padicField/19.2.0.1}{2} }^{12}$ R ${\href{/padicField/29.2.0.1}{2} }^{12}$ ${\href{/padicField/31.6.0.1}{6} }^{4}$ ${\href{/padicField/37.2.0.1}{2} }^{12}$ ${\href{/padicField/41.2.0.1}{2} }^{12}$ ${\href{/padicField/43.2.0.1}{2} }^{8}{,}\,{\href{/padicField/43.1.0.1}{1} }^{8}$ ${\href{/padicField/47.2.0.1}{2} }^{12}$ ${\href{/padicField/53.6.0.1}{6} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{12}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.2$x^{4} + 4 x^{3} + 16 x^{2} + 24 x + 12$$2$$2$$6$$C_2^2$$[3]^{2}$
\(3\) Copy content Toggle raw display 3.12.14.6$x^{12} + 6 x^{8} + 15 x^{6} + 9 x^{4} + 18 x^{2} + 9$$6$$2$$14$$D_6$$[3/2]_{2}^{2}$
3.12.14.6$x^{12} + 6 x^{8} + 15 x^{6} + 9 x^{4} + 18 x^{2} + 9$$6$$2$$14$$D_6$$[3/2]_{2}^{2}$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(23\) Copy content Toggle raw display 23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} + 21 x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.4.2.1$x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$